Gstreamer for rtsp
This commit is contained in:
parent
9284ce8849
commit
0af5030845
9 changed files with 335 additions and 62 deletions
22
README.md
Normal file
22
README.md
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Trajectory Prediction Video installation
|
||||
|
||||
## Install
|
||||
|
||||
* Run `bash build_opencv_with_gstreamer.sh` to build opencv with gstreamer support
|
||||
* Use pyenv + poetry to install
|
||||
|
||||
## How to
|
||||
|
||||
> See also the sibling repo [traptools](https://git.rubenvandeven.com/security_vision/traptools) for camera calibration and homography tools that are needed for this repo.
|
||||
|
||||
These are roughly the steps to go from datagathering to training
|
||||
|
||||
1. Make sure to have some recordings with a fixed camera.
|
||||
* Recording can be done with `ffmpeg -rtsp_transport udp -i rtsp://USER:PASS@IP:554/Streaming/Channels/1.mp4 hof2-cam-$(date "+%Y%m%d-%H%M").mp4`
|
||||
2. Follow the steps in the auxilary [traptools](https://git.rubenvandeven.com/security_vision/traptools) repository to obtain (1) camera matrix, lens distortion, image dimensions, and (2+3) homography
|
||||
3. Run the tracker, e.g. `poetry run tracker --detector ultralytics --homography ../DATASETS/NAME/homography.json --video-src ../DATASETS/NAME/*.mp4 --calibration ../DATASETS/NAME/calibration.json --save-for-training EXPERIMENTS/raw/NAME/`
|
||||
4. Parse tracker data to Trajectron format: `poetry run process_data --src-dir EXPERIMENTS/raw/NAME --dst-dir EXPERIMENTS/trajectron-data/ --name NAME`
|
||||
5. Train Trajectron model `poetry run trajectron_train --eval_every 10 --vis_every 1 --train_data_dict NAME_train.pkl --eval_data_dict NAME_val.pkl --offline_scene_graph no --preprocess_workers 8 --log_dir EXPERIMENTS/models --log_tag _NAME --train_epochs 100 --conf EXPERIMENTS/config.json --batch_size 256 --data_dir EXPERIMENTS/trajectron-data `
|
||||
6. The run!
|
||||
* On a video file (you can use a wildcard) `DISPLAY=:1 poetry run trapserv --remote-log-addr 100.69.123.91 --eval_device cuda:0 --detector ultralytics --homography ../DATASETS/NAME/homography.json --video-src ../DATASETS/NAME/*.mp4 --model_dir EXPERIMENTS/models/models_DATE_NAME/--smooth-predictions --num-samples 3 --render-window --calibration ../DATASETS/NAME/calibration.json` (the DISPLAY environment variable is used here to running over SSH connection and display on local monitor)
|
||||
* or on the RTSP stream. Which uses gstreamer to substantially reduce latency compared to the default ffmpeg bindings in OpenCV.
|
22
poetry.lock
generated
22
poetry.lock
generated
|
@ -1801,27 +1801,25 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"]
|
|||
|
||||
[[package]]
|
||||
name = "opencv-python"
|
||||
version = "4.8.1.78"
|
||||
version = "4.10.0.84"
|
||||
description = "Wrapper package for OpenCV python bindings."
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "opencv-python-4.8.1.78.tar.gz", hash = "sha256:cc7adbbcd1112877a39274106cb2752e04984bc01a031162952e97450d6117f6"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-macosx_10_16_x86_64.whl", hash = "sha256:91d5f6f5209dc2635d496f6b8ca6573ecdad051a09e6b5de4c399b8e673c60da"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:bc31f47e05447da8b3089faa0a07ffe80e114c91ce0b171e6424f9badbd1c5cd"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9814beca408d3a0eca1bae7e3e5be68b07c17ecceb392b94170881216e09b319"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4c406bdb41eb21ea51b4e90dfbc989c002786c3f601c236a99c59a54670a394"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-win32.whl", hash = "sha256:a7aac3900fbacf55b551e7b53626c3dad4c71ce85643645c43e91fcb19045e47"},
|
||||
{file = "opencv_python-4.8.1.78-cp37-abi3-win_amd64.whl", hash = "sha256:b983197f97cfa6fcb74e1da1802c7497a6f94ed561aba6980f1f33123f904956"},
|
||||
{file = "opencv_python-4.10.0.84-cp310-cp310-linux_x86_64.whl", hash = "sha256:c1f8e6ba7fd82517ba97d352f51d161c5be51495dc7b6c6f929a8546d650f4ea"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
numpy = [
|
||||
{version = ">=1.23.5", markers = "python_version >= \"3.11\""},
|
||||
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
|
||||
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
|
||||
{version = ">=1.23.5", markers = "python_version >= \"3.11\""},
|
||||
]
|
||||
|
||||
[package.source]
|
||||
type = "file"
|
||||
url = "opencv_python-4.10.0.84-cp310-cp310-linux_x86_64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "orjson"
|
||||
version = "3.9.10"
|
||||
|
@ -1939,8 +1937,8 @@ files = [
|
|||
|
||||
[package.dependencies]
|
||||
numpy = [
|
||||
{version = ">=1.22.4,<2", markers = "python_version < \"3.11\""},
|
||||
{version = ">=1.23.2,<2", markers = "python_version == \"3.11\""},
|
||||
{version = ">=1.22.4,<2", markers = "python_version < \"3.11\""},
|
||||
]
|
||||
python-dateutil = ">=2.8.2"
|
||||
pytz = ">=2020.1"
|
||||
|
@ -3324,7 +3322,7 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,
|
|||
[[package]]
|
||||
name = "trajectron-plus-plus"
|
||||
version = "0.1.1"
|
||||
description = "Predict trajectories for anomaly detection"
|
||||
description = "This repository contains the code for Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data by Tim Salzmann*, Boris Ivanovic*, Punarjay Chakravarty, and Marco Pavone (* denotes equal contribution)."
|
||||
optional = false
|
||||
python-versions = "^3.9,<3.12"
|
||||
files = []
|
||||
|
@ -3542,4 +3540,4 @@ watchdog = ["watchdog (>=2.3)"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10,<3.12,"
|
||||
content-hash = "bffa0878a620996b47aa5623b951f09ab010c267880c6dcd5a53741f244e675a"
|
||||
content-hash = "e92dc4bbdd22d5a5ebe5910f6cef1a45c7796e632fb6cb3debfc16f7b89b4972"
|
||||
|
|
|
@ -8,6 +8,7 @@ readme = "README.md"
|
|||
[tool.poetry.scripts]
|
||||
trapserv = "trap.plumber:start"
|
||||
tracker = "trap.tools:tracker_preprocess"
|
||||
process_data = "trap.process_data:main"
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
|
@ -34,6 +35,7 @@ pandas-helper-calc = {git = "https://github.com/scls19fr/pandas-helper-calc"}
|
|||
tsmoothie = "^1.0.5"
|
||||
pyglet = "^2.0.15"
|
||||
pyglet-cornerpin = "^0.2.0"
|
||||
opencv-python = {file="./opencv_python-4.10.0.84-cp310-cp310-linux_x86_64.whl"}
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
|
|
|
@ -57,7 +57,7 @@ class AnimationRenderer:
|
|||
# TODO: get FPS from frame_emitter
|
||||
# self.out = cv2.VideoWriter(str(filename), fourcc, 23.97, (1280,720))
|
||||
self.fps = 60
|
||||
self.frame_size = (self.config.frame_width,self.config.frame_height)
|
||||
self.frame_size = (self.config.camera.w,self.config.camera.h)
|
||||
self.hide_stats = False
|
||||
self.out_writer = None # self.start_writer() if self.config.render_file else None
|
||||
self.streaming_process = None # self.start_streaming() if self.config.render_url else None
|
||||
|
@ -246,7 +246,7 @@ class AnimationRenderer:
|
|||
img = pyglet.image.ImageData(self.frame_size[0], self.frame_size[1], 'RGB', img.tobytes())
|
||||
# don't draw in batch, so that it is the background
|
||||
self.video_sprite = pyglet.sprite.Sprite(img=img, batch=self.batch_bg)
|
||||
self.video_sprite.opacity = 30
|
||||
self.video_sprite.opacity = 100
|
||||
except zmq.ZMQError as e:
|
||||
# idx = frame.index if frame else "NONE"
|
||||
# logger.debug(f"reuse video frame {idx}")
|
||||
|
|
|
@ -8,6 +8,7 @@ from trap.tracker import DETECTORS
|
|||
from trap.frame_emitter import Camera
|
||||
|
||||
from pyparsing import Optional
|
||||
from trap.frame_emitter import UrlOrPath
|
||||
|
||||
class LambdaParser(argparse.ArgumentParser):
|
||||
"""Execute lambda functions
|
||||
|
@ -85,7 +86,7 @@ class CameraAction(argparse.Action):
|
|||
# 'camera_matrix': np.array(data['camera_matrix']),
|
||||
# 'dist_coeff': np.array(data['dist_coeff']),
|
||||
# }
|
||||
camera = Camera(np.array(data['camera_matrix']), np.array(data['dist_coeff']), namespace.frame_width, namespace.frame_height)
|
||||
camera = Camera(np.array(data['camera_matrix']), np.array(data['dist_coeff']), data['dim']['width'], data['dim']['height'], namespace.H)
|
||||
|
||||
setattr(namespace, 'camera', camera)
|
||||
|
||||
|
@ -253,10 +254,10 @@ connection_parser.add_argument('--bypass-prediction',
|
|||
# Frame emitter
|
||||
|
||||
frame_emitter_parser.add_argument("--video-src",
|
||||
help="source video to track from",
|
||||
type=Path,
|
||||
help="source video to track from can be either a relative or absolute path, or a url, like an RTSP resource",
|
||||
type=UrlOrPath,
|
||||
nargs='+',
|
||||
default=lambda: list(Path('../DATASETS/VIRAT_subset_0102x/').glob('*.mp4')))
|
||||
default=lambda: [UrlOrPath(p) for p in Path('../DATASETS/VIRAT_subset_0102x/').glob('*.mp4')])
|
||||
frame_emitter_parser.add_argument("--video-offset",
|
||||
help="Start playback from given frame. Note that when src is an array, this applies to all videos individually.",
|
||||
default=None,
|
||||
|
@ -292,14 +293,15 @@ tracker_parser.add_argument("--detector",
|
|||
tracker_parser.add_argument("--smooth-tracks",
|
||||
help="Smooth the tracker tracks before sending them to the predictor",
|
||||
action='store_true')
|
||||
tracker_parser.add_argument("--frame-width",
|
||||
help="width of the frames",
|
||||
type=int,
|
||||
default=1280)
|
||||
tracker_parser.add_argument("--frame-height",
|
||||
help="height of the frames",
|
||||
type=int,
|
||||
default=720)
|
||||
# now in calibration.json
|
||||
# tracker_parser.add_argument("--frame-width",
|
||||
# help="width of the frames",
|
||||
# type=int,
|
||||
# default=1280)
|
||||
# tracker_parser.add_argument("--frame-height",
|
||||
# help="height of the frames",
|
||||
# type=int,
|
||||
# default=720)
|
||||
|
||||
|
||||
# Renderer
|
||||
|
|
|
@ -12,11 +12,30 @@ from typing import Iterable, Optional
|
|||
import numpy as np
|
||||
import cv2
|
||||
import zmq
|
||||
import os
|
||||
from deep_sort_realtime.deep_sort.track import Track as DeepsortTrack
|
||||
from deep_sort_realtime.deep_sort.track import TrackState as DeepsortTrackState
|
||||
|
||||
from urllib.parse import urlparse
|
||||
|
||||
logger = logging.getLogger('trap.frame_emitter')
|
||||
|
||||
|
||||
class UrlOrPath():
|
||||
def __init__(self, str):
|
||||
self.url = urlparse(str)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.url.geturl()
|
||||
|
||||
def is_url(self) -> bool:
|
||||
return len(self.url.netloc) > 0
|
||||
|
||||
def path(self) -> Path:
|
||||
if self.is_url():
|
||||
return Path(self.url.path)
|
||||
return Path(self.url.geturl()) # can include scheme, such as C:/
|
||||
|
||||
class DetectionState(IntFlag):
|
||||
Tentative = 1 # state before n_init (see DeepsortTrack)
|
||||
Confirmed = 2 # after tentative
|
||||
|
@ -33,12 +52,13 @@ class DetectionState(IntFlag):
|
|||
raise RuntimeError("Should not run into Deleted entries here")
|
||||
|
||||
class Camera:
|
||||
def __init__(self, mtx, dist, w, h):
|
||||
def __init__(self, mtx, dist, w, h, H):
|
||||
self.mtx = mtx
|
||||
self.dist = dist
|
||||
self.w = w
|
||||
self.h = h
|
||||
self.newcameramtx, self.roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
||||
self.H = H # homography
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -135,11 +155,11 @@ class Frame:
|
|||
} for t in self.tracks.values()
|
||||
}
|
||||
|
||||
def video_src_from_config(config):
|
||||
def video_src_from_config(config) -> UrlOrPath:
|
||||
if config.video_loop:
|
||||
video_srcs: Iterable[Path] = cycle(config.video_src)
|
||||
video_srcs: Iterable[UrlOrPath] = cycle(config.video_src)
|
||||
else:
|
||||
video_srcs: Iterable[Path] = config.video_src
|
||||
video_srcs: Iterable[UrlOrPath] = config.video_src
|
||||
return video_srcs
|
||||
|
||||
class FrameEmitter:
|
||||
|
@ -159,24 +179,33 @@ class FrameEmitter:
|
|||
|
||||
logger.info(f"Connection socket {config.zmq_frame_addr}")
|
||||
|
||||
self.video_srcs: video_src_from_config(self.config)
|
||||
self.video_srcs = video_src_from_config(self.config)
|
||||
|
||||
|
||||
def emit_video(self):
|
||||
i = 0
|
||||
delay_generation = False
|
||||
for video_path in self.video_srcs:
|
||||
logger.info(f"Play from '{str(video_path)}'")
|
||||
if str(video_path).isdigit():
|
||||
# numeric input is a CV camera
|
||||
video = cv2.VideoCapture(int(str(video_path)))
|
||||
# TODO: make config variables
|
||||
video.set(cv2.CAP_PROP_FRAME_WIDTH, int(self.config.frame_width))
|
||||
video.set(cv2.CAP_PROP_FRAME_HEIGHT, int(self.config.frame_height))
|
||||
video.set(cv2.CAP_PROP_FRAME_WIDTH, int(self.config.camera.w))
|
||||
video.set(cv2.CAP_PROP_FRAME_HEIGHT, int(self.config.camera.h))
|
||||
print("exposure!", video.get(cv2.CAP_PROP_AUTO_EXPOSURE))
|
||||
video.set(cv2.CAP_PROP_FPS, 5)
|
||||
fps=5
|
||||
elif video_path.url.scheme == 'rtsp':
|
||||
gst = f"rtspsrc location={video_path} latency=0 buffer-mode=auto ! decodebin ! videoconvert ! appsink max-buffers=1 drop=true"
|
||||
logger.info(f"Capture gstreamer (gst-launch-1.0): {gst}")
|
||||
video = cv2.VideoCapture(gst, cv2.CAP_GSTREAMER)
|
||||
fps=12
|
||||
else:
|
||||
# os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "fflags;nobuffer|flags;low_delay|avioflags;direct|rtsp_transport;udp"
|
||||
video = cv2.VideoCapture(str(video_path))
|
||||
fps = video.get(cv2.CAP_PROP_FPS)
|
||||
delay_generation = True
|
||||
fps = video.get(cv2.CAP_PROP_FPS)
|
||||
target_frame_duration = 1./fps
|
||||
logger.info(f"Emit frames at {fps} fps")
|
||||
|
||||
|
@ -186,18 +215,20 @@ class FrameEmitter:
|
|||
i = self.config.video_offset
|
||||
|
||||
|
||||
if '-' in video_path.stem:
|
||||
path_stem = video_path.stem[:video_path.stem.rfind('-')]
|
||||
else:
|
||||
path_stem = video_path.stem
|
||||
path_stem += "-homography"
|
||||
homography_path = video_path.with_stem(path_stem).with_suffix('.txt')
|
||||
logger.info(f'check homography file {homography_path}')
|
||||
if homography_path.exists():
|
||||
logger.info(f'Found custom homography file! Using {homography_path}')
|
||||
video_H = np.loadtxt(homography_path, delimiter=',')
|
||||
else:
|
||||
video_H = None
|
||||
|
||||
# if '-' in video_path.path().stem:
|
||||
# path_stem = video_path.stem[:video_path.stem.rfind('-')]
|
||||
# else:
|
||||
# path_stem = video_path.stem
|
||||
# path_stem += "-homography"
|
||||
# homography_path = video_path.with_stem(path_stem).with_suffix('.txt')
|
||||
# logger.info(f'check homography file {homography_path}')
|
||||
# if homography_path.exists():
|
||||
# logger.info(f'Found custom homography file! Using {homography_path}')
|
||||
# video_H = np.loadtxt(homography_path, delimiter=',')
|
||||
# else:
|
||||
# video_H = None
|
||||
video_H = self.config.camera.H
|
||||
|
||||
prev_time = time.time()
|
||||
|
||||
|
@ -222,14 +253,17 @@ class FrameEmitter:
|
|||
# perhaps multiprocessing Array?
|
||||
self.frame_sock.send(pickle.dumps(frame))
|
||||
|
||||
# defer next loop
|
||||
now = time.time()
|
||||
time_diff = (now - prev_time)
|
||||
if time_diff < target_frame_duration:
|
||||
time.sleep(target_frame_duration - time_diff)
|
||||
now += target_frame_duration - time_diff
|
||||
# only delay consuming the next frame when using a file.
|
||||
# Otherwise, go ASAP
|
||||
if delay_generation:
|
||||
# defer next loop
|
||||
now = time.time()
|
||||
time_diff = (now - prev_time)
|
||||
if time_diff < target_frame_duration:
|
||||
time.sleep(target_frame_duration - time_diff)
|
||||
now += target_frame_duration - time_diff
|
||||
|
||||
prev_time = now
|
||||
prev_time = now
|
||||
|
||||
i += 1
|
||||
|
||||
|
|
|
@ -88,11 +88,12 @@ class DrawnTrack:
|
|||
self.inv_H = np.linalg.pinv(self.H)
|
||||
|
||||
pred_coords = []
|
||||
if self.draw_projection == PROJECTION_IMG:
|
||||
for pred_i, pred in enumerate(track.predictions):
|
||||
pred_coords.append(cv2.perspectiveTransform(np.array([pred]), self.inv_H)[0].tolist())
|
||||
elif self.draw_projection == PROJECTION_MAP:
|
||||
pred_coords = [pred for pred in track.predictions]
|
||||
if track.predictions:
|
||||
if self.draw_projection == PROJECTION_IMG:
|
||||
for pred_i, pred in enumerate(track.predictions):
|
||||
pred_coords.append(cv2.perspectiveTransform(np.array([pred]), self.inv_H)[0].tolist())
|
||||
elif self.draw_projection == PROJECTION_MAP:
|
||||
pred_coords = [pred for pred in track.predictions]
|
||||
|
||||
self.pred_coords = pred_coords
|
||||
# color = (128,0,128) if pred_i else (128,
|
||||
|
@ -282,7 +283,7 @@ class PreviewRenderer:
|
|||
# TODO: get FPS from frame_emitter
|
||||
# self.out = cv2.VideoWriter(str(filename), fourcc, 23.97, (1280,720))
|
||||
self.fps = 60
|
||||
self.frame_size = (self.config.frame_width,self.config.frame_height)
|
||||
self.frame_size = (self.config.camera.w,self.config.camera.h)
|
||||
self.hide_stats = False
|
||||
self.out_writer = self.start_writer() if self.config.render_file else None
|
||||
self.streaming_process = self.start_streaming() if self.config.render_url else None
|
||||
|
|
214
trap/process_data.py
Normal file
214
trap/process_data.py
Normal file
|
@ -0,0 +1,214 @@
|
|||
from pathlib import Path
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import dill
|
||||
import tqdm
|
||||
import argparse
|
||||
|
||||
#sys.path.append("../../")
|
||||
from trajectron.environment import Environment, Scene, Node
|
||||
from trajectron.utils import maybe_makedirs
|
||||
from trajectron.environment import derivative_of
|
||||
|
||||
desired_max_time = 100
|
||||
pred_indices = [2, 3]
|
||||
state_dim = 6
|
||||
frame_diff = 10
|
||||
desired_frame_diff = 1
|
||||
dt = 0.1 # dt per frame (e.g. 1/FPS)
|
||||
|
||||
standardization = {
|
||||
'PEDESTRIAN': {
|
||||
'position': {
|
||||
'x': {'mean': 0, 'std': 1},
|
||||
'y': {'mean': 0, 'std': 1}
|
||||
},
|
||||
'velocity': {
|
||||
'x': {'mean': 0, 'std': 2},
|
||||
'y': {'mean': 0, 'std': 2}
|
||||
},
|
||||
'acceleration': {
|
||||
'x': {'mean': 0, 'std': 1},
|
||||
'y': {'mean': 0, 'std': 1}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def augment_scene(scene, angle):
|
||||
def rotate_pc(pc, alpha):
|
||||
M = np.array([[np.cos(alpha), -np.sin(alpha)],
|
||||
[np.sin(alpha), np.cos(alpha)]])
|
||||
return M @ pc
|
||||
|
||||
data_columns = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration'], ['x', 'y']])
|
||||
|
||||
scene_aug = Scene(timesteps=scene.timesteps, dt=scene.dt, name=scene.name)
|
||||
|
||||
alpha = angle * np.pi / 180
|
||||
|
||||
for node in scene.nodes:
|
||||
x = node.data.position.x.copy()
|
||||
y = node.data.position.y.copy()
|
||||
|
||||
x, y = rotate_pc(np.array([x, y]), alpha)
|
||||
|
||||
vx = derivative_of(x, scene.dt)
|
||||
vy = derivative_of(y, scene.dt)
|
||||
ax = derivative_of(vx, scene.dt)
|
||||
ay = derivative_of(vy, scene.dt)
|
||||
|
||||
data_dict = {('position', 'x'): x,
|
||||
('position', 'y'): y,
|
||||
('velocity', 'x'): vx,
|
||||
('velocity', 'y'): vy,
|
||||
('acceleration', 'x'): ax,
|
||||
('acceleration', 'y'): ay}
|
||||
|
||||
node_data = pd.DataFrame(data_dict, columns=data_columns)
|
||||
|
||||
node = Node(node_type=node.type, node_id=node.id, data=node_data, first_timestep=node.first_timestep)
|
||||
|
||||
scene_aug.nodes.append(node)
|
||||
return scene_aug
|
||||
|
||||
|
||||
def augment(scene):
|
||||
scene_aug = np.random.choice(scene.augmented)
|
||||
scene_aug.temporal_scene_graph = scene.temporal_scene_graph
|
||||
return scene_aug
|
||||
|
||||
|
||||
# maybe_makedirs('trajectron-data')
|
||||
# for desired_source in [ 'hof2', ]:# ,'hof-maskrcnn', 'hof-yolov8', 'VIRAT-0102-parsed', 'virat-resnet-keypoints-full']:
|
||||
|
||||
def process_data(src_dir: Path, dst_dir: Path, name: str):
|
||||
print(f"Process data in {src_dir}, to {dst_dir}, identified by {name}")
|
||||
|
||||
nl = 0
|
||||
l = 0
|
||||
data_columns = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration'], ['x', 'y']])
|
||||
skipped_for_error = 0
|
||||
created = 0
|
||||
|
||||
for data_class in ['train', 'val', 'test']:
|
||||
env = Environment(node_type_list=['PEDESTRIAN'], standardization=standardization)
|
||||
attention_radius = dict()
|
||||
attention_radius[(env.NodeType.PEDESTRIAN, env.NodeType.PEDESTRIAN)] = 2.0
|
||||
env.attention_radius = attention_radius
|
||||
|
||||
scenes = []
|
||||
split_id = f"{name}_{data_class}"
|
||||
data_dict_path = dst_dir / (split_id + '.pkl')
|
||||
|
||||
print(data_dict_path)
|
||||
|
||||
|
||||
subpath = src_dir / data_class
|
||||
for file in subpath.glob("*.txt"):
|
||||
print(file)
|
||||
input_data_dict = dict()
|
||||
|
||||
data = pd.read_csv(file, sep='\t', index_col=False, header=None)
|
||||
|
||||
if data.shape[1] == 8:
|
||||
data.columns = ['frame_id', 'track_id', 'l','t', 'w','h', 'pos_x', 'pos_y']
|
||||
elif data.shape[1] == 9:
|
||||
data.columns = ['frame_id', 'track_id', 'l','t', 'w','h', 'pos_x', 'pos_y', 'state']
|
||||
else:
|
||||
raise Exception("Unknown data format. Check column count")
|
||||
# data['frame_id'] = pd.to_numeric(data['frame_id'], downcast='integer')
|
||||
data['track_id'] = pd.to_numeric(data['track_id'], downcast='integer')
|
||||
|
||||
|
||||
data['frame_id'] = (data['frame_id'] // frame_diff).astype(int)
|
||||
|
||||
|
||||
data['frame_id'] -= data['frame_id'].min()
|
||||
|
||||
data['node_type'] = 'PEDESTRIAN'
|
||||
data['node_id'] = data['track_id'].astype(str)
|
||||
data.sort_values('frame_id', inplace=True)
|
||||
|
||||
# Mean Position
|
||||
|
||||
print("Means: x:", data['pos_x'].mean(), "y:", data['pos_y'].mean())
|
||||
|
||||
data['pos_x'] = data['pos_x'] - data['pos_x'].mean()
|
||||
data['pos_y'] = data['pos_y'] - data['pos_y'].mean()
|
||||
|
||||
max_timesteps = data['frame_id'].max()
|
||||
|
||||
scene = Scene(timesteps=max_timesteps+1, dt=dt, name=split_id, aug_func=augment if data_class == 'train' else None)
|
||||
|
||||
for node_id in tqdm.tqdm(pd.unique(data['node_id'])):
|
||||
node_df = data[data['node_id'] == node_id]
|
||||
if not np.all(np.diff(node_df['frame_id']) == 1):
|
||||
# print(f"Interval in {node_id} not always 1")
|
||||
# print(node_df['frame_id'])
|
||||
# print(np.diff(node_df['frame_id']) != 1)
|
||||
# mask=np.append(False, np.diff(node_df['frame_id']) != 1)
|
||||
# print(node_df[mask]['frame_id'])
|
||||
skipped_for_error += 1
|
||||
continue
|
||||
|
||||
|
||||
node_values = node_df[['pos_x', 'pos_y']].values
|
||||
|
||||
if node_values.shape[0] < 2:
|
||||
continue
|
||||
|
||||
new_first_idx = node_df['frame_id'].iloc[0]
|
||||
|
||||
x = node_values[:, 0]
|
||||
y = node_values[:, 1]
|
||||
vx = derivative_of(x, scene.dt)
|
||||
vy = derivative_of(y, scene.dt)
|
||||
ax = derivative_of(vx, scene.dt)
|
||||
ay = derivative_of(vy, scene.dt)
|
||||
|
||||
data_dict = {('position', 'x'): x,
|
||||
('position', 'y'): y,
|
||||
('velocity', 'x'): vx,
|
||||
('velocity', 'y'): vy,
|
||||
('acceleration', 'x'): ax,
|
||||
('acceleration', 'y'): ay}
|
||||
|
||||
node_data = pd.DataFrame(data_dict, columns=data_columns)
|
||||
node = Node(node_type=env.NodeType.PEDESTRIAN, node_id=node_id, data=node_data)
|
||||
node.first_timestep = new_first_idx
|
||||
|
||||
scene.nodes.append(node)
|
||||
created+=1
|
||||
# if data_class == 'train':
|
||||
# scene.augmented = list()
|
||||
# angles = np.arange(0, 360, 15) if data_class == 'train' else [0]
|
||||
# for angle in angles:
|
||||
# scene.augmented.append(augment_scene(scene, angle))
|
||||
|
||||
# print(scene)
|
||||
scenes.append(scene)
|
||||
print(f'Processed {len(scenes):.2f} scene for data class {data_class}')
|
||||
|
||||
env.scenes = scenes
|
||||
|
||||
print(env.scenes)
|
||||
|
||||
if len(scenes) > 0:
|
||||
with open(data_dict_path, 'wb') as f:
|
||||
dill.dump(env, f, protocol=dill.HIGHEST_PROTOCOL)
|
||||
|
||||
print(f"Linear: {l}")
|
||||
print(f"Non-Linear: {nl}")
|
||||
print(f"error: {skipped_for_error}, used: {created}")
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src-dir", "-s", type=Path, required=True, help="Directory with tracker output in .txt files")
|
||||
parser.add_argument("--dst-dir", "-d", type=Path, required=True, help="Destination directory to store parsed .pkl files (typically 'trajectron-data')")
|
||||
parser.add_argument("--name", "-n", type=str, required=True, help="Identifier to prefix the output .pkl files with (result is NAME-train.pkl, NAME-test.pkl)")
|
||||
|
||||
args = parser.parse_args()
|
||||
process_data(**args.__dict__)
|
|
@ -179,7 +179,7 @@ class Tracker:
|
|||
# embedder='torchreid', embedder_wts="../MODELS/osnet_x1_0_imagenet.pth"
|
||||
)
|
||||
elif self.config.detector == DETECTOR_YOLOv8:
|
||||
self.model = YOLO('EXPERIMENTS/yolov8x.pt', classes=0)
|
||||
self.model = YOLO('EXPERIMENTS/yolov8x.pt')
|
||||
else:
|
||||
raise RuntimeError(f"{self.config.detector} is not implemented yet. See --help")
|
||||
|
||||
|
@ -253,7 +253,7 @@ class Tracker:
|
|||
|
||||
|
||||
if self.config.detector == DETECTOR_YOLOv8:
|
||||
detections: [Detection] = _yolov8_track(frame, self.model)
|
||||
detections: [Detection] = _yolov8_track(frame, self.model, classes=[0])
|
||||
else :
|
||||
detections: [Detection] = self._resnet_track(frame.img, scale = 1)
|
||||
|
||||
|
|
Loading…
Reference in a new issue