173 lines
5.9 KiB
Python
173 lines
5.9 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
import random
|
|
import os
|
|
from geopy.distance import distance
|
|
from shapely.geometry import MultiPoint
|
|
|
|
from .util import get_heading
|
|
|
|
def random_points(edges,
|
|
n=100,
|
|
d=None,
|
|
verbose=False):
|
|
m = len(edges)
|
|
lengths = edges['length'].tolist()
|
|
total_length = edges.sum()['length']
|
|
lengths_normalized = [l/total_length for l in lengths]
|
|
|
|
rows = []
|
|
points = []
|
|
indices = np.random.choice(range(m),
|
|
size=2*n,
|
|
p=lengths_normalized)
|
|
pbar = tqdm(total=n)
|
|
i = j = 0
|
|
while i < n:
|
|
index = indices[j]
|
|
row = edges.iloc[index]
|
|
u, v, key = edges.index[index]
|
|
line = row['geometry']
|
|
offset = np.random.rand() * line.length
|
|
point = line.interpolate(offset)
|
|
lat = point.y
|
|
lon = point.x
|
|
flag = 1
|
|
if d is not None:
|
|
for _lat, _lon in points:
|
|
_d = np.sqrt(np.square(lat-_lat) + np.square(lon-_lon))
|
|
if _d < 1e-4 and distance((lat, lon), (_lat, _lon)).m < d:
|
|
flag = 0
|
|
break
|
|
if flag:
|
|
i += 1
|
|
pbar.update(1)
|
|
start = line.interpolate(offset*0.9)
|
|
end = line.interpolate(min(line.length, offset*1.1))
|
|
heading = get_heading(start.y, start.x, end.y, end.x)
|
|
rows.append({"lat": lat,
|
|
"lon": lon,
|
|
"id": i,
|
|
"u": u,
|
|
"v": v,
|
|
"heading": heading,
|
|
"offset": offset,
|
|
"key": key})
|
|
points.append((lat, lon))
|
|
j += 1
|
|
pbar.close()
|
|
return pd.DataFrame(rows)
|
|
|
|
def random_stratified_points(edges, n=10):
|
|
m = len(edges)
|
|
rows = []
|
|
for index in range(len(edges)):
|
|
row = edges.iloc[index]
|
|
u, v, key = edges.index[index]
|
|
line = row['geometry']
|
|
|
|
for _ in range(n):
|
|
offset = np.random.rand() * line.length
|
|
point = line.interpolate(offset)
|
|
lat = point.y
|
|
lon = point.x
|
|
rows.append({"lat": lat,
|
|
"lon": lon,
|
|
"u": u,
|
|
"v": v,
|
|
"key": key})
|
|
return pd.DataFrame(rows)
|
|
|
|
def select_panoid(meta,
|
|
n=5000,
|
|
distance=10,
|
|
selection="closest",
|
|
seed=123):
|
|
YEARS = ["2010<year<2016", "2016<=year"]
|
|
|
|
# Set random seed
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
# Filter by distance
|
|
meta = meta.query(f"distance < {distance}")
|
|
|
|
# Filter by occurance for both pre and post
|
|
meta_pre = meta.query(YEARS[0]).drop_duplicates(["lat_anchor", "lon_anchor"])
|
|
meta_post = meta.query(YEARS[1]).drop_duplicates(["lat_anchor", "lon_anchor"])
|
|
meta_both = meta_pre.merge(meta_post, on=["lat_anchor", "lon_anchor"], how="inner")
|
|
|
|
# Sample anchor points
|
|
meta_sample = meta_both.drop_duplicates(['lat_anchor', 'lon_anchor']).sample(n, replace=False)
|
|
lat_anchor_chosen = meta_sample.lat_anchor.unique()
|
|
lon_anchor_chosen = meta_sample.lon_anchor.unique()
|
|
|
|
# Sample for pre and post
|
|
meta_sub = meta[meta.lat_anchor.isin(lat_anchor_chosen)]
|
|
meta_sub = meta_sub[meta_sub.lon_anchor.isin(lon_anchor_chosen)]
|
|
|
|
# Select panoid
|
|
groups = []
|
|
for years in YEARS:
|
|
group = meta_sub.query(years)
|
|
if selection == "closest":
|
|
group = group.sort_values(['lat_anchor','lon_anchor', 'distance'])
|
|
else:
|
|
group = group.sort_values(['lat_anchor','lon_anchor', 'year'], ascending=False)
|
|
group = group.groupby(['lat_anchor','lon_anchor']).first().reset_index()
|
|
group['year'] = group.year.apply(int)
|
|
groups.append(group)
|
|
|
|
# Random select the orthogonal heading
|
|
merged = groups[0].merge(groups[1],
|
|
on=['lat_anchor', 'lon_anchor', 'u', 'v', 'key', 'heading', 'offset'],
|
|
suffixes=("_pre", "_post"))
|
|
|
|
merged['heading_pre'] = merged['heading_post'] = (merged.heading + 360 + 90 - 180 * (np.random.rand(n) > 0.5)) % 360
|
|
merged['heading_pre'] = merged['heading_pre'].apply(int)
|
|
merged['heading_post'] = merged['heading_post'].apply(int)
|
|
return merged
|
|
|
|
def select_panoid_recent(meta,
|
|
year,
|
|
n=5000,
|
|
distance=10,
|
|
seed=123):
|
|
|
|
# Set random seed
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
# Filter by distance
|
|
meta = meta.query(f"distance < {distance}")
|
|
meta = meta.query(f"year >= {year}")
|
|
|
|
# Sample anchor points
|
|
meta_sample = meta.drop_duplicates(['id']).sample(n, replace=False)
|
|
lat_anchor_chosen = meta_sample.lat_anchor.unique()
|
|
lon_anchor_chosen = meta_sample.lon_anchor.unique()
|
|
|
|
# Sample for pre and post
|
|
meta_sub = meta[meta.lat_anchor.isin(lat_anchor_chosen)]
|
|
meta_sub = meta_sub[meta_sub.lon_anchor.isin(lon_anchor_chosen)]
|
|
|
|
# Select panoid
|
|
|
|
meta = meta_sub.sort_values(['lat_anchor','lon_anchor', 'distance']) \
|
|
.groupby(['lat_anchor','lon_anchor']) \
|
|
.first().reset_index()
|
|
|
|
# Random select the orthogonal heading
|
|
meta['road_heading'] = meta.heading
|
|
meta['heading'] = (meta.heading + 360 + 90 - 180 * (np.random.rand(n) > 0.5)) % 360
|
|
meta['heading'] = meta['heading'].apply(int)
|
|
meta['year'] = meta['year'].apply(int)
|
|
meta['month'] = meta['month'].apply(int)
|
|
meta['save_path'] = meta.apply(get_path, 1)
|
|
return meta
|
|
|
|
def get_path(row):
|
|
panoid = row['panoid']
|
|
heading = row['heading']
|
|
return os.path.join("/scratch/haosheng/camera/", panoid[:2], panoid[2:4], panoid[4:6], panoid[6:], f"{heading}.png")
|