surveilling-surveillance/plot/spatial_distribution.py
2021-05-20 13:22:04 -07:00

125 lines
4.1 KiB
Python

from util import constants as C
import osmnx as ox
import pandas as pd
import pickle as pkl
from tqdm import tqdm
from matplotlib import pyplot as plt
import seaborn as sb
sb.set()
def plot_samples(
meta_file_path="/home/haosheng/dataset/camera/deployment/verified_0425.csv"):
data = pd.read_csv(meta_file_path)
for city, place in list(C.CITIES.items()):
with open(f"/home/haosheng/dataset/camera/shape/graph/{city}.pkl", "rb") as f:
G = pkl.load(f)
ox.plot.plot_graph(G,
figsize=(12, 12),
bgcolor='white',
node_color='#696969',
edge_color="#A9A9A9",
edge_linewidth=0.8,
node_size=0,
edge_alpha=0.5,
save=False,
show=False)
sample = data.query(f'city == "{city}"')
plt.scatter(
sample.lon_anchor,
sample.lat_anchor,
s=0.2,
c='blue',
alpha=1)
plt.tight_layout()
plt.savefig(f"figures/samples_{city}.png")
print(f"Save figure to [figures/samples_{city}.png]")
def plot_prepost(
meta_file_path="/home/haosheng/dataset/camera/deployment/verified_prepost_0425.csv"):
data = pd.read_csv(meta_file_path)
for city, place in list(C.CITIES.items())[:10]:
with open(f"/home/haosheng/dataset/camera/shape/graph/{city}.pkl", "rb") as f:
G = pkl.load(f)
ox.plot.plot_graph(G,
figsize=(12, 12),
bgcolor='white',
node_color='#696969',
edge_color="#A9A9A9",
edge_linewidth=0.8,
node_size=0,
edge_alpha=0.5,
save=False,
show=False)
print("Generating the plot .. ")
pre = data.query(
f'camera_count > 0 and split == "pre" and city == "{city}"')
post = data.query(
f'camera_count > 0 and split == "post" and city == "{city}"')
plt.scatter(
pre.lon_anchor,
pre.lat_anchor,
s=150,
facecolors='none',
edgecolors='red',
linewidth=2.0,
marker='o')
plt.scatter(
post.lon_anchor,
post.lat_anchor,
s=120,
c='black',
marker='x')
plt.tight_layout()
plt.savefig(f"figures/prepost_spatial_distribution_{city}.png")
print(
f"Save figure to [figures/prepost_spatial_distribution_{city}.png]")
def plot_post(
meta_file_path="/home/haosheng/dataset/camera/deployment/verified_0425.csv"):
data = pd.read_csv(meta_file_path)
for city, place in C.CITIES.items():
with open(f"/home/haosheng/dataset/camera/shape/graph/{city}.pkl", "rb") as f:
G = pkl.load(f)
ox.plot.plot_graph(G,
figsize=(12, 12),
bgcolor='white',
node_color='#696969',
edge_color="#A9A9A9",
edge_linewidth=0.8,
node_size=0,
edge_alpha=0.5,
save=False,
show=False)
print("Generating the plot .. ")
pre = data.query(f'camera_count > 0 and city == "{city}"')
post = data.query(f'camera_count > 0 and city == "{city}"')
plt.scatter(
pre.lon_anchor,
pre.lat_anchor,
color='red',
#color='#BE0000',
s=30,
linewidth=2.0,
marker='o',
alpha=1)
plt.tight_layout()
plt.savefig(f"figures/post_spatial_distribution_{city}.png")
print(f"Save figure to [figures/post_spatial_distribution_{city}.png]")
def plot_spatial_distribution():
plot_samples()
plot_prepost()
plot_post()