import numpy as np from . import detection class DatasetEvaluator: """ Base class for a dataset evaluator. This class will accumulate information of the inputs/outputs (by :meth:`process`), and produce evaluation results in the end (by :meth:`evaluate`). """ def reset(self): """ Preparation for a new round of evaluation. Should be called before starting a round of evaluation. """ raise NotImplementedError ("[reset] method need to be implemented in child class.") def process(self, inputs, outputs): """ Process the pair of inputs and outputs. If they contain batches, the pairs can be consumed one-by-one using `zip`: Args: inputs (list): the inputs that's used to call the model. outputs (list): the return value of `model(inputs)` """ raise NotImplementedError ("[process] method need to be implemented in child class.") def evaluate(self): """ Evaluate/summarize the performance, after processing all input/output pairs. """ raise NotImplementedError ("[evaluate] method need to be implemented in child class.") class DetectionEvaluator(DatasetEvaluator): """ Evaluator for detection task. This class will accumulate information of the inputs/outputs (by :meth:`process`), and produce evaluation results in the end (by :meth:`evaluate`). """ def __init__(self, iou_thresh=0.5): self._evaluator = detection.Evaluator() self._iou_thresh = iou_thresh self.reset() def reset(self): self._bbox = detection.BoundingBoxes() def process(self, groudtruths, predictions): """ Inputs format: https://detectron2.readthedocs.io/en/latest/tutorials/models.html?highlight=input%20format#model-input-format Outputs format: https://detectron2.readthedocs.io/en/latest/tutorials/models.html?highlight=input%20format#model-output-format """ for sample_input, sample_output in zip(groudtruths, predictions): image_id = sample_input['image_id'] gt_instances = sample_input['instances'] pred_instances = sample_output['instances'] width = sample_input['width'] height = sample_input['height'] for i in range(len(gt_instances)): instance = gt_instances[i] class_id = instance.get( 'gt_classes').cpu().detach().numpy().item() boxes = instance.get('gt_boxes') for box in boxes: box_np = box.cpu().detach().numpy() bb = detection.BoundingBox( image_id, class_id, box_np[0], box_np[1], box_np[2], box_np[3], detection.CoordinatesType.Absolute, (width, height), detection.BBType.GroundTruth, format=detection.BBFormat.XYX2Y2) self._bbox.addBoundingBox(bb) for i in range(len(pred_instances)): instance = pred_instances[i] class_id = instance.get( 'pred_classes').cpu().detach().numpy().item() scores = instance.get('scores').cpu().detach().numpy().item() boxes = instance.get('pred_boxes') for box in boxes: box_np = box.cpu().detach().numpy() bb = detection.BoundingBox( image_id, class_id, box_np[0], box_np[1], box_np[2], box_np[3], detection.CoordinatesType.Absolute, (width, height), detection.BBType.Detected, scores, format=detection.BBFormat.XYX2Y2) self._bbox.addBoundingBox(bb) def evaluate(self, save_dir): results = self._evaluator.GetPascalVOCMetrics(self._bbox, self._iou_thresh) if isinstance(results, dict): results = [results] metrics = {} APs = [] for result in results: metrics[f'AP_{result["class"]}'] = result['AP'] APs.append(result['AP']) metrics['mAP'] = np.nanmean(APs) self._evaluator.PlotPrecisionRecallCurve(self._bbox, savePath=save_dir, showGraphic=False) return metrics class DatasetEvaluators(DatasetEvaluator): """ Wrapper class to combine multiple :class:`DatasetEvaluator` instances. This class dispatches every evaluation call to all of its :class:`DatasetEvaluator`. """ def __init__(self, evaluators): """ Args: evaluators (list): the evaluators to combine. """ super().__init__() self._evaluators = evaluators def reset(self): for evaluator in self._evaluators: evaluator.reset() def process(self, inputs, outputs): for evaluator in self._evaluators: evaluator.process(inputs, outputs) def evaluate(self): results = OrderedDict() for evaluator in self._evaluators: result = evaluator.evaluate() if is_main_process() and result is not None: for k, v in result.items(): assert ( k not in results ), "Different evaluators produce results with the same key {}".format(k) results[k] = v return results