Compare commits
No commits in common. "547d82b2fa82ae2b20e5767d9ad77603ed52509a" and "01d9e2a7fd0c5a0731ce5f538e6f997ba7835689" have entirely different histories.
547d82b2fa
...
01d9e2a7fd
7 changed files with 137 additions and 83 deletions
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -1,6 +1,2 @@
|
||||||
output/
|
output/
|
||||||
mot_benchmark
|
mot_benchmark
|
||||||
venv
|
|
||||||
dist
|
|
||||||
build
|
|
||||||
**/*egg-info
|
|
37
README.md
37
README.md
|
@ -2,7 +2,7 @@ SORT
|
||||||
=====
|
=====
|
||||||
|
|
||||||
A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences.
|
A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences.
|
||||||
See an example [video here](https://alex.bewley.ai/misc/SORT-MOT17-06-FRCNN.webm).
|
See an example [video here](https://motchallenge.net/movies/ETH-Linthescher-SORT.mp4).
|
||||||
|
|
||||||
By Alex Bewley
|
By Alex Bewley
|
||||||
|
|
||||||
|
@ -18,8 +18,6 @@ For your convenience, this repo also contains *Faster* RCNN detections for the M
|
||||||
**Also see:**
|
**Also see:**
|
||||||
A new and improved version of SORT with a Deep Association Metric implemented in tensorflow is available at [https://github.com/nwojke/deep_sort](https://github.com/nwojke/deep_sort) .
|
A new and improved version of SORT with a Deep Association Metric implemented in tensorflow is available at [https://github.com/nwojke/deep_sort](https://github.com/nwojke/deep_sort) .
|
||||||
|
|
||||||
This fork packages the SORT algorithm as a pip package (simple-online-realtime-tracking).
|
|
||||||
|
|
||||||
### License
|
### License
|
||||||
|
|
||||||
SORT is released under the GPL License (refer to the LICENSE file for details) to promote the open use of the tracker and future improvements. If you require a permissive license contact Alex (alex@bewley.ai).
|
SORT is released under the GPL License (refer to the LICENSE file for details) to promote the open use of the tracker and future improvements. If you require a permissive license contact Alex (alex@bewley.ai).
|
||||||
|
@ -38,13 +36,37 @@ If you find this repo useful in your research, please consider citing:
|
||||||
doi={10.1109/ICIP.2016.7533003}
|
doi={10.1109/ICIP.2016.7533003}
|
||||||
}
|
}
|
||||||
|
|
||||||
### Installing:
|
|
||||||
|
|
||||||
To install the package:
|
### Dependencies:
|
||||||
|
|
||||||
|
To install required dependencies run:
|
||||||
```
|
```
|
||||||
pip install simple-online-realtime-tracking==0.3
|
$ pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### Demo:
|
||||||
|
|
||||||
|
To run the tracker with the provided detections:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ cd path/to/sort
|
||||||
|
$ python sort.py
|
||||||
|
```
|
||||||
|
|
||||||
|
To display the results you need to:
|
||||||
|
|
||||||
|
1. Download the [2D MOT 2015 benchmark dataset](https://motchallenge.net/data/2D_MOT_2015/#download)
|
||||||
|
0. Create a symbolic link to the dataset
|
||||||
|
```
|
||||||
|
$ ln -s /path/to/MOT2015_challenge/data/2DMOT2015 mot_benchmark
|
||||||
|
```
|
||||||
|
0. Run the demo with the ```--display``` flag
|
||||||
|
```
|
||||||
|
$ python sort.py --display
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
### Main Results
|
### Main Results
|
||||||
|
|
||||||
Using the [MOT challenge devkit](https://motchallenge.net/devkit/) the method produces the following results (as described in the paper).
|
Using the [MOT challenge devkit](https://motchallenge.net/devkit/) the method produces the following results (as described in the paper).
|
||||||
|
@ -59,11 +81,12 @@ Using the [MOT challenge devkit](https://motchallenge.net/devkit/) the method pr
|
||||||
KITTI-17 | 67.1 | 92.3 | 0.26 | 9 1 8 0| 38 225 9 16| 60.2 72.3 61.3
|
KITTI-17 | 67.1 | 92.3 | 0.26 | 9 1 8 0| 38 225 9 16| 60.2 72.3 61.3
|
||||||
*Overall* | 49.5 | 77.5 | 1.24 | 234 48 111 75| 3311 11660 274 499| 34.0 73.3 35.1
|
*Overall* | 49.5 | 77.5 | 1.24 | 234 48 111 75| 3311 11660 274 499| 34.0 73.3 35.1
|
||||||
|
|
||||||
|
|
||||||
### Using SORT in your own project
|
### Using SORT in your own project
|
||||||
|
|
||||||
Below is the gist of how to instantiate and update SORT. See the ['__main__'](https://github.com/abewley/sort/blob/master/sort.py#L239) section of [sort.py](https://github.com/abewley/sort/blob/master/sort.py#L239) for a complete example.
|
Below is the gist of how to instantiate and update SORT. See the ['__main__'](https://github.com/abewley/sort/blob/master/sort.py#L239) section of [sort.py](https://github.com/abewley/sort/blob/master/sort.py#L239) for a complete example.
|
||||||
|
|
||||||
from sort import Sort
|
from sort import *
|
||||||
|
|
||||||
#create instance of SORT
|
#create instance of SORT
|
||||||
mot_tracker = Sort()
|
mot_tracker = Sort()
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
[build-system]
|
|
||||||
requires = [
|
|
||||||
"setuptools>=42",
|
|
||||||
"wheel"
|
|
||||||
]
|
|
||||||
build-backend = "setuptools.build_meta"
|
|
4
requirements.txt
Normal file
4
requirements.txt
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
filterpy==1.4.1
|
||||||
|
numba==0.38.1
|
||||||
|
scikit-image==0.14.0
|
||||||
|
lap==0.4.0
|
22
setup.cfg
22
setup.cfg
|
@ -1,22 +0,0 @@
|
||||||
[metadata]
|
|
||||||
name = simple-online-realtime-tracking
|
|
||||||
version = 0.3
|
|
||||||
author = Alex Bewley
|
|
||||||
description = A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences
|
|
||||||
long_description = file: README.md
|
|
||||||
long_description_content_type = text/markdown
|
|
||||||
url = https://github.com/timstokman/sort
|
|
||||||
classifiers =
|
|
||||||
Programming Language :: Python :: 3
|
|
||||||
Operating System :: OS Independent
|
|
||||||
License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
|
||||||
|
|
||||||
[options]
|
|
||||||
package_dir =
|
|
||||||
= src
|
|
||||||
packages = sort
|
|
||||||
python_requires = >=3.8
|
|
||||||
install_requires =
|
|
||||||
filterpy==1.4.5
|
|
||||||
lapx>=0.5.0
|
|
||||||
numpy>=1.18.5
|
|
|
@ -1,6 +1,6 @@
|
||||||
"""
|
"""
|
||||||
SORT: A Simple, Online and Realtime Tracker
|
SORT: A Simple, Online and Realtime Tracker
|
||||||
Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
|
Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
This program is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
|
@ -15,8 +15,16 @@
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
"""
|
"""
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from numba import jit
|
||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib
|
||||||
|
matplotlib.use('TkAgg')
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.patches as patches
|
||||||
|
from skimage import io
|
||||||
|
|
||||||
import glob
|
import glob
|
||||||
import time
|
import time
|
||||||
|
@ -36,25 +44,23 @@ def linear_assignment(cost_matrix):
|
||||||
x, y = linear_sum_assignment(cost_matrix)
|
x, y = linear_sum_assignment(cost_matrix)
|
||||||
return np.array(list(zip(x, y)))
|
return np.array(list(zip(x, y)))
|
||||||
|
|
||||||
|
|
||||||
def iou_batch(bb_test, bb_gt):
|
|
||||||
"""
|
|
||||||
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
|
|
||||||
"""
|
|
||||||
bb_gt = np.expand_dims(bb_gt, 0)
|
|
||||||
bb_test = np.expand_dims(bb_test, 1)
|
|
||||||
|
|
||||||
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
|
|
||||||
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
|
@jit
|
||||||
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
|
def iou(bb_test, bb_gt):
|
||||||
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
|
"""
|
||||||
|
Computes IUO between two bboxes in the form [x1,y1,x2,y2]
|
||||||
|
"""
|
||||||
|
xx1 = np.maximum(bb_test[0], bb_gt[0])
|
||||||
|
yy1 = np.maximum(bb_test[1], bb_gt[1])
|
||||||
|
xx2 = np.minimum(bb_test[2], bb_gt[2])
|
||||||
|
yy2 = np.minimum(bb_test[3], bb_gt[3])
|
||||||
w = np.maximum(0., xx2 - xx1)
|
w = np.maximum(0., xx2 - xx1)
|
||||||
h = np.maximum(0., yy2 - yy1)
|
h = np.maximum(0., yy2 - yy1)
|
||||||
wh = w * h
|
wh = w * h
|
||||||
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
|
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
|
||||||
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
|
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
|
||||||
return(o)
|
return(o)
|
||||||
|
|
||||||
|
|
||||||
def convert_bbox_to_z(bbox):
|
def convert_bbox_to_z(bbox):
|
||||||
"""
|
"""
|
||||||
|
@ -70,7 +76,6 @@ def convert_bbox_to_z(bbox):
|
||||||
r = w / float(h)
|
r = w / float(h)
|
||||||
return np.array([x, y, s, r]).reshape((4, 1))
|
return np.array([x, y, s, r]).reshape((4, 1))
|
||||||
|
|
||||||
|
|
||||||
def convert_x_to_bbox(x,score=None):
|
def convert_x_to_bbox(x,score=None):
|
||||||
"""
|
"""
|
||||||
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
||||||
|
@ -94,7 +99,7 @@ class KalmanBoxTracker(object):
|
||||||
Initialises a tracker using initial bounding box.
|
Initialises a tracker using initial bounding box.
|
||||||
"""
|
"""
|
||||||
#define constant velocity model
|
#define constant velocity model
|
||||||
self.kf = KalmanFilter(dim_x=7, dim_z=4)
|
self.kf = KalmanFilter(dim_x=7, dim_z=4, compute_log_likelihood=False)
|
||||||
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
|
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
|
||||||
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
|
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
|
||||||
|
|
||||||
|
@ -112,7 +117,6 @@ class KalmanBoxTracker(object):
|
||||||
self.hits = 0
|
self.hits = 0
|
||||||
self.hit_streak = 0
|
self.hit_streak = 0
|
||||||
self.age = 0
|
self.age = 0
|
||||||
self.original_id = bbox[5]
|
|
||||||
|
|
||||||
def update(self,bbox):
|
def update(self,bbox):
|
||||||
"""
|
"""
|
||||||
|
@ -122,7 +126,6 @@ class KalmanBoxTracker(object):
|
||||||
self.history = []
|
self.history = []
|
||||||
self.hits += 1
|
self.hits += 1
|
||||||
self.hit_streak += 1
|
self.hit_streak += 1
|
||||||
self.original_id = bbox[5]
|
|
||||||
self.kf.update(convert_bbox_to_z(bbox))
|
self.kf.update(convert_bbox_to_z(bbox))
|
||||||
|
|
||||||
def predict(self):
|
def predict(self):
|
||||||
|
@ -145,7 +148,6 @@ class KalmanBoxTracker(object):
|
||||||
"""
|
"""
|
||||||
return convert_x_to_bbox(self.kf.x)
|
return convert_x_to_bbox(self.kf.x)
|
||||||
|
|
||||||
|
|
||||||
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
"""
|
"""
|
||||||
Assigns detections to tracked object (both represented as bounding boxes)
|
Assigns detections to tracked object (both represented as bounding boxes)
|
||||||
|
@ -154,8 +156,11 @@ def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
"""
|
"""
|
||||||
if(len(trackers)==0):
|
if(len(trackers)==0):
|
||||||
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
|
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
|
||||||
|
iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
|
||||||
|
|
||||||
iou_matrix = iou_batch(detections, trackers)
|
for d,det in enumerate(detections):
|
||||||
|
for t,trk in enumerate(trackers):
|
||||||
|
iou_matrix[d,t] = iou(det,trk)
|
||||||
|
|
||||||
if min(iou_matrix.shape) > 0:
|
if min(iou_matrix.shape) > 0:
|
||||||
a = (iou_matrix > iou_threshold).astype(np.int32)
|
a = (iou_matrix > iou_threshold).astype(np.int32)
|
||||||
|
@ -192,13 +197,12 @@ def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
|
|
||||||
|
|
||||||
class Sort(object):
|
class Sort(object):
|
||||||
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
|
def __init__(self, max_age=1, min_hits=3):
|
||||||
"""
|
"""
|
||||||
Sets key parameters for SORT
|
Sets key parameters for SORT
|
||||||
"""
|
"""
|
||||||
self.max_age = max_age
|
self.max_age = max_age
|
||||||
self.min_hits = min_hits
|
self.min_hits = min_hits
|
||||||
self.iou_threshold = iou_threshold
|
|
||||||
self.trackers = []
|
self.trackers = []
|
||||||
self.frame_count = 0
|
self.frame_count = 0
|
||||||
|
|
||||||
|
@ -224,11 +228,15 @@ class Sort(object):
|
||||||
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
||||||
for t in reversed(to_del):
|
for t in reversed(to_del):
|
||||||
self.trackers.pop(t)
|
self.trackers.pop(t)
|
||||||
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold)
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks)
|
||||||
|
|
||||||
# update matched trackers with assigned detections
|
# update matched trackers with assigned detections
|
||||||
for m in matched:
|
for m in matched:
|
||||||
self.trackers[m[1]].update(dets[m[0], :])
|
self.trackers[m[1]].update(dets[m[0], :])
|
||||||
|
#for t, trk in enumerate(self.trackers):
|
||||||
|
# if(t not in unmatched_trks):
|
||||||
|
# d = matched[np.where(matched[:,1]==t)[0],0]
|
||||||
|
# trk.update(dets[d,:][0])
|
||||||
|
|
||||||
# create and initialise new trackers for unmatched detections
|
# create and initialise new trackers for unmatched detections
|
||||||
for i in unmatched_dets:
|
for i in unmatched_dets:
|
||||||
|
@ -238,7 +246,7 @@ class Sort(object):
|
||||||
for trk in reversed(self.trackers):
|
for trk in reversed(self.trackers):
|
||||||
d = trk.get_state()[0]
|
d = trk.get_state()[0]
|
||||||
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
|
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
|
||||||
ret.append(np.concatenate((d,[trk.id+1],[trk.original_id])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
||||||
i -= 1
|
i -= 1
|
||||||
# remove dead tracklet
|
# remove dead tracklet
|
||||||
if(trk.time_since_update > self.max_age):
|
if(trk.time_since_update > self.max_age):
|
||||||
|
@ -246,3 +254,72 @@ class Sort(object):
|
||||||
if(len(ret)>0):
|
if(len(ret)>0):
|
||||||
return np.concatenate(ret)
|
return np.concatenate(ret)
|
||||||
return np.empty((0,5))
|
return np.empty((0,5))
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
"""Parse input arguments."""
|
||||||
|
parser = argparse.ArgumentParser(description='SORT demo')
|
||||||
|
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
|
||||||
|
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')
|
||||||
|
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# all train
|
||||||
|
args = parse_args()
|
||||||
|
display = args.display
|
||||||
|
phase = args.phase
|
||||||
|
total_time = 0.0
|
||||||
|
total_frames = 0
|
||||||
|
colours = np.random.rand(32, 3) #used only for display
|
||||||
|
if(display):
|
||||||
|
if not os.path.exists('mot_benchmark'):
|
||||||
|
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
|
||||||
|
exit()
|
||||||
|
plt.ion()
|
||||||
|
fig = plt.figure()
|
||||||
|
ax1 = fig.add_subplot(111, aspect='equal')
|
||||||
|
|
||||||
|
if not os.path.exists('output'):
|
||||||
|
os.makedirs('output')
|
||||||
|
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')
|
||||||
|
for seq_dets_fn in glob.glob(pattern):
|
||||||
|
mot_tracker = Sort() #create instance of the SORT tracker
|
||||||
|
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
|
||||||
|
seq = seq_dets_fn[pattern.find('*'):].split('/')[0]
|
||||||
|
|
||||||
|
with open('output/%s.txt'%(seq),'w') as out_file:
|
||||||
|
print("Processing %s."%(seq))
|
||||||
|
for frame in range(int(seq_dets[:,0].max())):
|
||||||
|
frame += 1 #detection and frame numbers begin at 1
|
||||||
|
dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
|
||||||
|
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
|
||||||
|
total_frames += 1
|
||||||
|
|
||||||
|
if(display):
|
||||||
|
fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase, seq, frame)
|
||||||
|
im =io.imread(fn)
|
||||||
|
ax1.imshow(im)
|
||||||
|
plt.title(seq + ' Tracked Targets')
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
trackers = mot_tracker.update(dets)
|
||||||
|
cycle_time = time.time() - start_time
|
||||||
|
total_time += cycle_time
|
||||||
|
|
||||||
|
for d in trackers:
|
||||||
|
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
|
||||||
|
if(display):
|
||||||
|
d = d.astype(np.int32)
|
||||||
|
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
|
||||||
|
#ax1.set_adjustable('box-forced')
|
||||||
|
|
||||||
|
if(display):
|
||||||
|
fig.canvas.flush_events()
|
||||||
|
plt.draw()
|
||||||
|
ax1.cla()
|
||||||
|
|
||||||
|
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
|
||||||
|
|
||||||
|
if(display):
|
||||||
|
print("Note: to get real runtime results run without the option: --display")
|
|
@ -1,18 +0,0 @@
|
||||||
"""
|
|
||||||
SORT: A Simple, Online and Realtime Tracker
|
|
||||||
Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
|
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
"""
|
|
||||||
from .sort import Sort
|
|
Loading…
Reference in a new issue