From dbffde9f6578b3dee89421fc0a2bb711b31e7cb9 Mon Sep 17 00:00:00 2001 From: abewley Date: Wed, 3 Feb 2016 13:22:25 +1000 Subject: [PATCH] Create sort.py Moved from private repo. --- sort.py | 295 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 295 insertions(+) create mode 100644 sort.py diff --git a/sort.py b/sort.py new file mode 100644 index 0000000..da05f91 --- /dev/null +++ b/sort.py @@ -0,0 +1,295 @@ +""" + SORT: A Simple, Online and Realtime Tracker + Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" +from __future__ import print_function + +import os.path +import numpy as np +import matplotlib.pyplot as plt +import matplotlib.patches as patches +from skimage import io +from sklearn.utils.linear_assignment_ import linear_assignment +import glob +import time +import argparse +from filterpy.kalman import KalmanFilter + + +def iou(bb_test,bb_gt): + """ + Computes IUO between two bboxes in the form [x1,y1,x2,y2] + """ + xx1 = np.maximum(bb_test[0], bb_gt[0]) + yy1 = np.maximum(bb_test[1], bb_gt[1]) + xx2 = np.minimum(bb_test[2], bb_gt[2]) + yy2 = np.minimum(bb_test[3], bb_gt[3]) + w = np.maximum(0., xx2 - xx1) + h = np.maximum(0., yy2 - yy1) + wh = w * h + o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1]) + + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh) + return(o) + +def convert_bbox_to_z(bbox): + """ + Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form + [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is + the aspect ratio + """ + w = bbox[2]-bbox[0] + h = bbox[3]-bbox[1] + x = bbox[0]+w/2. + y = bbox[1]+h/2. + s = w*h #scale is just area + r = w/h + return np.array([x,y,s,r]).reshape((4,1)) + +def convert_x_to_bbox(x,score=None): + """ + Takes a bounding box in the form [x,y,s,r] and returns it in the form + [x1,y1,x2,x2] where x1,y1 is the top left and x2,y2 is the bottom right + """ + w = np.sqrt(x[2]*x[3]) + h = x[2]/w + if(score==None): + return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) + else: + return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) + + +class KalmanBoxTracker(object): + """ + This class represents the internel state of individual tracked objects observed as bbox. + """ + count = 0 + def __init__(self,bbox): + """ + Initialises a tracker using initial bounding box. + """ + #define constant velocity model + self.kf = KalmanFilter(dim_x=7, dim_z=4) + self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) + self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) + + self.kf.R[2:,2:] *= 10. + self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities + self.kf.P *= 10. + self.kf.Q[-1,-1] *= 0.01 + self.kf.Q[4:,4:] *= 0.01 + + self.kf.x[:4] = convert_bbox_to_z(bbox) + self.time_since_update = 0 + self.id = KalmanBoxTracker.count + KalmanBoxTracker.count += 1 + self.history = [] + self.hits = 0 + self.hit_streak = 0 + self.age = 0 + + def update(self,bbox): + """ + Updates the state vector with observed bbox. + """ + self.time_since_update = 0 + self.history = [] + self.hits += 1 + self.hit_streak += 1 + self.kf.update(convert_bbox_to_z(bbox)) + + def predict(self): + """ + Advances the state vector and returns the predicted bounding box estimate. + """ + if((self.kf.x[6]+self.kf.x[2])<=0): + self.kf.x[6] *= 0.0 + self.kf.predict() + self.age += 1 + if(self.time_since_update>0): + self.hit_streak = 0 + self.time_since_update += 1 + self.history.append(convert_x_to_bbox(self.kf.x)) + return self.history[-1] + + def get_state(self): + """ + Returns the current bounding box estimate. + """ + return convert_x_to_bbox(self.kf.x) + +def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): + """ + Assigns detections to tracked object (both represented as bounding boxes) + + Returns 3 lists of matches, unmatched_detections and unmatched_trackers + """ + if(len(trackers)==0): + return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) + iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32) + + for d,det in enumerate(detections): + for t,trk in enumerate(trackers): + iou_matrix[d,t] = iou(det,trk) + matched_indices = linear_assignment(-iou_matrix) + + unmatched_detections = [] + for d,det in enumerate(detections): + if(d not in matched_indices[:,0]): + unmatched_detections.append(d) + unmatched_trackers = [] + for d,det in enumerate(trackers): + if(d not in matched_indices[:,1]): + unmatched_trackers.append(d) + + #filter out matched with low IOU + matches = [] + for m in matched_indices: + if(iou_matrix[m[0],m[1]]= self.min_hits or self.frame_count <= self.min_hits)): + ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive + i -= 1 + #remove dead tracklet + if(trk.time_since_update > self.max_age): + self.trackers.pop(i) + if(len(ret)>0): + return np.concatenate(ret) + return np.empty((0,5)) + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='SORT demo') + parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true') + args = parser.parse_args() + return args + +if __name__ == '__main__': + # all train + sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2'] + args = parse_args() + display = args.display + phase = 'train' + total_time = 0.0 + total_frames = 0 + colours = np.random.rand(32,3) #used only for display + if(display): + if not os.path.exists('mot_benchmark'): + print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') + exit() + plt.ion() + fig = plt.figure() + + if not os.path.exists('output'): + os.makedirs('output') + + for seq in sequences: + mot_tracker = Sort() #create instance of the SORT tracker + seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections + with open('output/%s.txt'%(seq),'w') as out_file: + print("Processing %s."%(seq)) + for frame in range(int(seq_dets[:,0].max())): + frame += 1 #detection and frame numbers begin at 1 + dets = seq_dets[seq_dets[:,0]==frame,2:7] + total_frames += 1 + + if(display): + ax1 = fig.add_subplot(111, aspect='equal') + fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame) + im =io.imread(fn) + ax1.imshow(im) + plt.title(seq+' Tracked Targets') + + start_time = time.time() + trackers = mot_tracker.update(dets) + cycle_time = time.time() - start_time + total_time += cycle_time + + for d in trackers: + print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file) + if(display): + ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:])) + ax1.set_adjustable('box-forced') + + if(display): + fig.canvas.flush_events() + plt.draw() + ax1.cla() + + print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time)) + if(display): + print("Note: to get real runtime results run without the option: --display") + + +