diff --git a/sort.py b/sort.py
new file mode 100644
index 0000000..da05f91
--- /dev/null
+++ b/sort.py
@@ -0,0 +1,295 @@
+"""
+ SORT: A Simple, Online and Realtime Tracker
+ Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+"""
+from __future__ import print_function
+
+import os.path
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.patches as patches
+from skimage import io
+from sklearn.utils.linear_assignment_ import linear_assignment
+import glob
+import time
+import argparse
+from filterpy.kalman import KalmanFilter
+
+
+def iou(bb_test,bb_gt):
+ """
+ Computes IUO between two bboxes in the form [x1,y1,x2,y2]
+ """
+ xx1 = np.maximum(bb_test[0], bb_gt[0])
+ yy1 = np.maximum(bb_test[1], bb_gt[1])
+ xx2 = np.minimum(bb_test[2], bb_gt[2])
+ yy2 = np.minimum(bb_test[3], bb_gt[3])
+ w = np.maximum(0., xx2 - xx1)
+ h = np.maximum(0., yy2 - yy1)
+ wh = w * h
+ o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1])
+ + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh)
+ return(o)
+
+def convert_bbox_to_z(bbox):
+ """
+ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
+ [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
+ the aspect ratio
+ """
+ w = bbox[2]-bbox[0]
+ h = bbox[3]-bbox[1]
+ x = bbox[0]+w/2.
+ y = bbox[1]+h/2.
+ s = w*h #scale is just area
+ r = w/h
+ return np.array([x,y,s,r]).reshape((4,1))
+
+def convert_x_to_bbox(x,score=None):
+ """
+ Takes a bounding box in the form [x,y,s,r] and returns it in the form
+ [x1,y1,x2,x2] where x1,y1 is the top left and x2,y2 is the bottom right
+ """
+ w = np.sqrt(x[2]*x[3])
+ h = x[2]/w
+ if(score==None):
+ return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
+ else:
+ return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
+
+
+class KalmanBoxTracker(object):
+ """
+ This class represents the internel state of individual tracked objects observed as bbox.
+ """
+ count = 0
+ def __init__(self,bbox):
+ """
+ Initialises a tracker using initial bounding box.
+ """
+ #define constant velocity model
+ self.kf = KalmanFilter(dim_x=7, dim_z=4)
+ self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
+ self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
+
+ self.kf.R[2:,2:] *= 10.
+ self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
+ self.kf.P *= 10.
+ self.kf.Q[-1,-1] *= 0.01
+ self.kf.Q[4:,4:] *= 0.01
+
+ self.kf.x[:4] = convert_bbox_to_z(bbox)
+ self.time_since_update = 0
+ self.id = KalmanBoxTracker.count
+ KalmanBoxTracker.count += 1
+ self.history = []
+ self.hits = 0
+ self.hit_streak = 0
+ self.age = 0
+
+ def update(self,bbox):
+ """
+ Updates the state vector with observed bbox.
+ """
+ self.time_since_update = 0
+ self.history = []
+ self.hits += 1
+ self.hit_streak += 1
+ self.kf.update(convert_bbox_to_z(bbox))
+
+ def predict(self):
+ """
+ Advances the state vector and returns the predicted bounding box estimate.
+ """
+ if((self.kf.x[6]+self.kf.x[2])<=0):
+ self.kf.x[6] *= 0.0
+ self.kf.predict()
+ self.age += 1
+ if(self.time_since_update>0):
+ self.hit_streak = 0
+ self.time_since_update += 1
+ self.history.append(convert_x_to_bbox(self.kf.x))
+ return self.history[-1]
+
+ def get_state(self):
+ """
+ Returns the current bounding box estimate.
+ """
+ return convert_x_to_bbox(self.kf.x)
+
+def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
+ """
+ Assigns detections to tracked object (both represented as bounding boxes)
+
+ Returns 3 lists of matches, unmatched_detections and unmatched_trackers
+ """
+ if(len(trackers)==0):
+ return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
+ iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
+
+ for d,det in enumerate(detections):
+ for t,trk in enumerate(trackers):
+ iou_matrix[d,t] = iou(det,trk)
+ matched_indices = linear_assignment(-iou_matrix)
+
+ unmatched_detections = []
+ for d,det in enumerate(detections):
+ if(d not in matched_indices[:,0]):
+ unmatched_detections.append(d)
+ unmatched_trackers = []
+ for d,det in enumerate(trackers):
+ if(d not in matched_indices[:,1]):
+ unmatched_trackers.append(d)
+
+ #filter out matched with low IOU
+ matches = []
+ for m in matched_indices:
+ if(iou_matrix[m[0],m[1]]= self.min_hits or self.frame_count <= self.min_hits)):
+ ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
+ i -= 1
+ #remove dead tracklet
+ if(trk.time_since_update > self.max_age):
+ self.trackers.pop(i)
+ if(len(ret)>0):
+ return np.concatenate(ret)
+ return np.empty((0,5))
+
+def parse_args():
+ """Parse input arguments."""
+ parser = argparse.ArgumentParser(description='SORT demo')
+ parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
+ args = parser.parse_args()
+ return args
+
+if __name__ == '__main__':
+ # all train
+ sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2']
+ args = parse_args()
+ display = args.display
+ phase = 'train'
+ total_time = 0.0
+ total_frames = 0
+ colours = np.random.rand(32,3) #used only for display
+ if(display):
+ if not os.path.exists('mot_benchmark'):
+ print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
+ exit()
+ plt.ion()
+ fig = plt.figure()
+
+ if not os.path.exists('output'):
+ os.makedirs('output')
+
+ for seq in sequences:
+ mot_tracker = Sort() #create instance of the SORT tracker
+ seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections
+ with open('output/%s.txt'%(seq),'w') as out_file:
+ print("Processing %s."%(seq))
+ for frame in range(int(seq_dets[:,0].max())):
+ frame += 1 #detection and frame numbers begin at 1
+ dets = seq_dets[seq_dets[:,0]==frame,2:7]
+ total_frames += 1
+
+ if(display):
+ ax1 = fig.add_subplot(111, aspect='equal')
+ fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame)
+ im =io.imread(fn)
+ ax1.imshow(im)
+ plt.title(seq+' Tracked Targets')
+
+ start_time = time.time()
+ trackers = mot_tracker.update(dets)
+ cycle_time = time.time() - start_time
+ total_time += cycle_time
+
+ for d in trackers:
+ print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
+ if(display):
+ ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
+ ax1.set_adjustable('box-forced')
+
+ if(display):
+ fig.canvas.flush_events()
+ plt.draw()
+ ax1.cla()
+
+ print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
+ if(display):
+ print("Note: to get real runtime results run without the option: --display")
+
+
+