WIP: update linear assignment.
- Fix for Scipy has a DeprecationWarning for linear_assignment_ module. - LAP scales better than Scipy for frames with 100s-1000s of objects.
This commit is contained in:
parent
54e63a7e43
commit
b69f2fc279
1 changed files with 77 additions and 56 deletions
125
sort.py
125
sort.py
|
@ -18,19 +18,24 @@
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
from numba import jit
|
from numba import jit
|
||||||
import os.path
|
import os.path as osp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib
|
||||||
|
matplotlib.use('TkAgg')
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import matplotlib.patches as patches
|
import matplotlib.patches as patches
|
||||||
from skimage import io
|
from skimage import io
|
||||||
from sklearn.utils.linear_assignment_ import linear_assignment
|
#from sklearn.utils.linear_assignment_ import linear_assignment
|
||||||
|
import lap
|
||||||
import glob
|
import glob
|
||||||
import time
|
import time
|
||||||
import argparse
|
import argparse
|
||||||
from filterpy.kalman import KalmanFilter
|
from filterpy.kalman import KalmanFilter
|
||||||
|
|
||||||
|
np.random.seed(0)
|
||||||
|
|
||||||
@jit
|
@jit
|
||||||
def iou(bb_test,bb_gt):
|
def iou(bb_test, bb_gt):
|
||||||
"""
|
"""
|
||||||
Computes IUO between two bboxes in the form [x1,y1,x2,y2]
|
Computes IUO between two bboxes in the form [x1,y1,x2,y2]
|
||||||
"""
|
"""
|
||||||
|
@ -41,8 +46,8 @@ def iou(bb_test,bb_gt):
|
||||||
w = np.maximum(0., xx2 - xx1)
|
w = np.maximum(0., xx2 - xx1)
|
||||||
h = np.maximum(0., yy2 - yy1)
|
h = np.maximum(0., yy2 - yy1)
|
||||||
wh = w * h
|
wh = w * h
|
||||||
o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1])
|
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
|
||||||
+ (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh)
|
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
|
||||||
return(o)
|
return(o)
|
||||||
|
|
||||||
def convert_bbox_to_z(bbox):
|
def convert_bbox_to_z(bbox):
|
||||||
|
@ -51,21 +56,21 @@ def convert_bbox_to_z(bbox):
|
||||||
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
|
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
|
||||||
the aspect ratio
|
the aspect ratio
|
||||||
"""
|
"""
|
||||||
w = bbox[2]-bbox[0]
|
w = bbox[2] - bbox[0]
|
||||||
h = bbox[3]-bbox[1]
|
h = bbox[3] - bbox[1]
|
||||||
x = bbox[0]+w/2.
|
x = bbox[0] + w/2.
|
||||||
y = bbox[1]+h/2.
|
y = bbox[1] + h/2.
|
||||||
s = w*h #scale is just area
|
s = w * h #scale is just area
|
||||||
r = w/float(h)
|
r = w / float(h)
|
||||||
return np.array([x,y,s,r]).reshape((4,1))
|
return np.array([x, y, s, r]).reshape((4, 1))
|
||||||
|
|
||||||
def convert_x_to_bbox(x,score=None):
|
def convert_x_to_bbox(x,score=None):
|
||||||
"""
|
"""
|
||||||
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
||||||
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
|
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
|
||||||
"""
|
"""
|
||||||
w = np.sqrt(x[2]*x[3])
|
w = np.sqrt(x[2] * x[3])
|
||||||
h = x[2]/w
|
h = x[2] / w
|
||||||
if(score==None):
|
if(score==None):
|
||||||
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
|
||||||
else:
|
else:
|
||||||
|
@ -74,7 +79,7 @@ def convert_x_to_bbox(x,score=None):
|
||||||
|
|
||||||
class KalmanBoxTracker(object):
|
class KalmanBoxTracker(object):
|
||||||
"""
|
"""
|
||||||
This class represents the internel state of individual tracked objects observed as bbox.
|
This class represents the internal state of individual tracked objects observed as bbox.
|
||||||
"""
|
"""
|
||||||
count = 0
|
count = 0
|
||||||
def __init__(self,bbox):
|
def __init__(self,bbox):
|
||||||
|
@ -144,21 +149,34 @@ def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
for d,det in enumerate(detections):
|
for d,det in enumerate(detections):
|
||||||
for t,trk in enumerate(trackers):
|
for t,trk in enumerate(trackers):
|
||||||
iou_matrix[d,t] = iou(det,trk)
|
iou_matrix[d,t] = iou(det,trk)
|
||||||
matched_indices = linear_assignment(-iou_matrix)
|
|
||||||
|
# TODO (bewley): remove rows and cols iou.max() < threshold
|
||||||
|
|
||||||
|
if min(iou_matrix.shape) > 0:
|
||||||
|
a = (iou_matrix > iou_threshold).astype(np.int32)
|
||||||
|
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
|
||||||
|
#matrix is #TODO(this doesnt provide much gains)
|
||||||
|
matched_indices = np.stack(np.where(a), axis=1)
|
||||||
|
else:
|
||||||
|
_, x, y = lap.lapjv(-iou_matrix, extend_cost=True)
|
||||||
|
matched_indices = np.array([[y[i],i] for i in x if i >= 0]) #
|
||||||
|
else:
|
||||||
|
matched_indices = np.empty(shape=(0,2))
|
||||||
|
#matched_indices = linear_assignment(-iou_matrix)
|
||||||
|
|
||||||
unmatched_detections = []
|
unmatched_detections = []
|
||||||
for d,det in enumerate(detections):
|
for d, det in enumerate(detections):
|
||||||
if(d not in matched_indices[:,0]):
|
if(d not in matched_indices[:,0]):
|
||||||
unmatched_detections.append(d)
|
unmatched_detections.append(d)
|
||||||
unmatched_trackers = []
|
unmatched_trackers = []
|
||||||
for t,trk in enumerate(trackers):
|
for t, trk in enumerate(trackers):
|
||||||
if(t not in matched_indices[:,1]):
|
if(t not in matched_indices[:,1]):
|
||||||
unmatched_trackers.append(t)
|
unmatched_trackers.append(t)
|
||||||
|
|
||||||
#filter out matched with low IOU
|
#filter out matched with low IOU
|
||||||
matches = []
|
matches = []
|
||||||
for m in matched_indices:
|
for m in matched_indices:
|
||||||
if(iou_matrix[m[0],m[1]]<iou_threshold):
|
if(iou_matrix[m[0], m[1]]<iou_threshold):
|
||||||
unmatched_detections.append(m[0])
|
unmatched_detections.append(m[0])
|
||||||
unmatched_trackers.append(m[1])
|
unmatched_trackers.append(m[1])
|
||||||
else:
|
else:
|
||||||
|
@ -171,9 +189,8 @@ def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
|
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Sort(object):
|
class Sort(object):
|
||||||
def __init__(self,max_age=1,min_hits=3):
|
def __init__(self, max_age=1, min_hits=3):
|
||||||
"""
|
"""
|
||||||
Sets key parameters for SORT
|
Sets key parameters for SORT
|
||||||
"""
|
"""
|
||||||
|
@ -182,47 +199,49 @@ class Sort(object):
|
||||||
self.trackers = []
|
self.trackers = []
|
||||||
self.frame_count = 0
|
self.frame_count = 0
|
||||||
|
|
||||||
def update(self,dets):
|
def update(self, dets=np.empty((0, 5))):
|
||||||
"""
|
"""
|
||||||
Params:
|
Params:
|
||||||
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
|
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
|
||||||
Requires: this method must be called once for each frame even with empty detections.
|
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
|
||||||
Returns the a similar array, where the last column is the object ID.
|
Returns the a similar array, where the last column is the object ID.
|
||||||
|
|
||||||
NOTE: The number of objects returned may differ from the number of detections provided.
|
NOTE: The number of objects returned may differ from the number of detections provided.
|
||||||
"""
|
"""
|
||||||
self.frame_count += 1
|
self.frame_count += 1
|
||||||
#get predicted locations from existing trackers.
|
# get predicted locations from existing trackers.
|
||||||
trks = np.zeros((len(self.trackers),5))
|
trks = np.zeros((len(self.trackers), 5))
|
||||||
to_del = []
|
to_del = []
|
||||||
ret = []
|
ret = []
|
||||||
for t,trk in enumerate(trks):
|
for t, trk in enumerate(trks):
|
||||||
pos = self.trackers[t].predict()[0]
|
pos = self.trackers[t].predict()[0]
|
||||||
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
|
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
|
||||||
if(np.any(np.isnan(pos))):
|
if np.any(np.isnan(pos)):
|
||||||
to_del.append(t)
|
to_del.append(t)
|
||||||
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
||||||
for t in reversed(to_del):
|
for t in reversed(to_del):
|
||||||
self.trackers.pop(t)
|
self.trackers.pop(t)
|
||||||
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks)
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks)
|
||||||
|
|
||||||
#update matched trackers with assigned detections
|
# update matched trackers with assigned detections
|
||||||
for t,trk in enumerate(self.trackers):
|
for m in matched:
|
||||||
if(t not in unmatched_trks):
|
self.trackers[m[1]].update(dets[m[0], :])
|
||||||
d = matched[np.where(matched[:,1]==t)[0],0]
|
#for t, trk in enumerate(self.trackers):
|
||||||
trk.update(dets[d,:][0])
|
# if(t not in unmatched_trks):
|
||||||
|
# d = matched[np.where(matched[:,1]==t)[0],0]
|
||||||
|
# trk.update(dets[d,:][0])
|
||||||
|
|
||||||
#create and initialise new trackers for unmatched detections
|
# create and initialise new trackers for unmatched detections
|
||||||
for i in unmatched_dets:
|
for i in unmatched_dets:
|
||||||
trk = KalmanBoxTracker(dets[i,:])
|
trk = KalmanBoxTracker(dets[i,:])
|
||||||
self.trackers.append(trk)
|
self.trackers.append(trk)
|
||||||
i = len(self.trackers)
|
i = len(self.trackers)
|
||||||
for trk in reversed(self.trackers):
|
for trk in reversed(self.trackers):
|
||||||
d = trk.get_state()[0]
|
d = trk.get_state()[0]
|
||||||
if((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)):
|
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
|
||||||
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
||||||
i -= 1
|
i -= 1
|
||||||
#remove dead tracklet
|
# remove dead tracklet
|
||||||
if(trk.time_since_update > self.max_age):
|
if(trk.time_since_update > self.max_age):
|
||||||
self.trackers.pop(i)
|
self.trackers.pop(i)
|
||||||
if(len(ret)>0):
|
if(len(ret)>0):
|
||||||
|
@ -233,45 +252,49 @@ def parse_args():
|
||||||
"""Parse input arguments."""
|
"""Parse input arguments."""
|
||||||
parser = argparse.ArgumentParser(description='SORT demo')
|
parser = argparse.ArgumentParser(description='SORT demo')
|
||||||
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
|
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
|
||||||
|
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='mot_benchmark')
|
||||||
|
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
return args
|
return args
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# all train
|
# all train
|
||||||
sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2']
|
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
display = args.display
|
display = args.display
|
||||||
phase = 'train'
|
phase = args.phase
|
||||||
total_time = 0.0
|
total_time = 0.0
|
||||||
total_frames = 0
|
total_frames = 0
|
||||||
colours = np.random.rand(32,3) #used only for display
|
colours = np.random.rand(32, 3) #used only for display
|
||||||
if(display):
|
if(display):
|
||||||
if not os.path.exists('mot_benchmark'):
|
if not osp.exists('mot_benchmark'):
|
||||||
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
|
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
|
||||||
exit()
|
exit()
|
||||||
plt.ion()
|
plt.ion()
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
|
|
||||||
if not os.path.exists('output'):
|
if not osp.exists('output'):
|
||||||
os.makedirs('output')
|
os.makedirs('output')
|
||||||
|
pattern = osp.join(args.seq_path, phase, '*', 'det', 'det.txt')
|
||||||
for seq in sequences:
|
for seq_dets_fn in glob.glob(pattern):
|
||||||
mot_tracker = Sort() #create instance of the SORT tracker
|
mot_tracker = Sort() #create instance of the SORT tracker
|
||||||
seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections
|
print(seq_dets_fn)
|
||||||
|
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
|
||||||
|
seq = seq_dets_fn[pattern.find('*'):].split('/')[0]
|
||||||
|
|
||||||
with open('output/%s.txt'%(seq),'w') as out_file:
|
with open('output/%s.txt'%(seq),'w') as out_file:
|
||||||
print("Processing %s."%(seq))
|
print("Processing %s."%(seq))
|
||||||
for frame in range(int(seq_dets[:,0].max())):
|
for frame in range(int(seq_dets[:,0].max())):
|
||||||
frame += 1 #detection and frame numbers begin at 1
|
frame += 1 #detection and frame numbers begin at 1
|
||||||
dets = seq_dets[seq_dets[:,0]==frame,2:7]
|
dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
|
||||||
dets[:,2:4] += dets[:,0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
|
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
|
||||||
total_frames += 1
|
total_frames += 1
|
||||||
|
|
||||||
if(display):
|
if(display):
|
||||||
ax1 = fig.add_subplot(111, aspect='equal')
|
ax1 = fig.add_subplot(111, aspect='equal')
|
||||||
fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame)
|
fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase, seq, frame)
|
||||||
im =io.imread(fn)
|
im =io.imread(fn)
|
||||||
ax1.imshow(im)
|
ax1.imshow(im)
|
||||||
plt.title(seq+' Tracked Targets')
|
plt.title(seq + ' Tracked Targets')
|
||||||
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
trackers = mot_tracker.update(dets)
|
trackers = mot_tracker.update(dets)
|
||||||
|
@ -283,16 +306,14 @@ if __name__ == '__main__':
|
||||||
if(display):
|
if(display):
|
||||||
d = d.astype(np.int32)
|
d = d.astype(np.int32)
|
||||||
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
|
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
|
||||||
ax1.set_adjustable('box-forced')
|
#ax1.set_adjustable('box-forced')
|
||||||
|
|
||||||
if(display):
|
if(display):
|
||||||
fig.canvas.flush_events()
|
fig.canvas.flush_events()
|
||||||
plt.draw()
|
plt.draw()
|
||||||
ax1.cla()
|
ax1.cla()
|
||||||
|
|
||||||
print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
|
print("Total Tracking took: %.3f for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
|
||||||
|
|
||||||
if(display):
|
if(display):
|
||||||
print("Note: to get real runtime results run without the option: --display")
|
print("Note: to get real runtime results run without the option: --display")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue