diff --git a/sort.py b/sort.py index fe86b7b..db2f6dc 100644 --- a/sort.py +++ b/sort.py @@ -18,7 +18,7 @@ from __future__ import print_function from numba import jit -import os.path as osp +import os import numpy as np import matplotlib matplotlib.use('TkAgg') @@ -87,7 +87,7 @@ class KalmanBoxTracker(object): Initialises a tracker using initial bounding box. """ #define constant velocity model - self.kf = KalmanFilter(dim_x=7, dim_z=4) + self.kf = KalmanFilter(dim_x=7, dim_z=4, compute_log_likelihood=False) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) @@ -266,15 +266,15 @@ if __name__ == '__main__': total_frames = 0 colours = np.random.rand(32, 3) #used only for display if(display): - if not osp.exists('mot_benchmark'): + if not os.path.exists('mot_benchmark'): print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') exit() plt.ion() fig = plt.figure() - if not osp.exists('output'): + if not os.path.exists('output'): os.makedirs('output') - pattern = osp.join(args.seq_path, phase, '*', 'det', 'det.txt') + pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') for seq_dets_fn in glob.glob(pattern): mot_tracker = Sort() #create instance of the SORT tracker print(seq_dets_fn)