Scripts to run alphapose training in a loop and analyse results

This commit is contained in:
Ruben van de Ven 2023-03-08 14:04:03 +01:00
commit c769f0f87a
8 changed files with 2447 additions and 0 deletions

5
.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
data/
exp/
detector/
out/
pretrained-models/

1
.python-version Normal file
View file

@ -0,0 +1 @@
3.10.4

12
downloadCOCO.sh Executable file
View file

@ -0,0 +1,12 @@
#!/bin/bash
wget -nc --directory-prefix=data/coco http://images.cocodataset.org/zips/train2017.zip
wget -nc --directory-prefix=data/coco http://images.cocodataset.org/zips/val2017.zip
wget -nc --directory-prefix=data/coco http://images.cocodataset.org/annotations/annotations_trainval2017.zip
cd data/coco
unzip -n annotations_trainval2017.zip
unzip -n val2017.zip
unzip -n train2017.zip

680
find_diffs.ipynb Normal file

File diff suppressed because one or more lines are too long

265
loop_alphapose_training.py Normal file
View file

@ -0,0 +1,265 @@
"""
TODO this script runs Alphapose's train.py, the created model is used to re-annotate the training-images, which is then fed back into the system
For now the only thing it does is that it merges alphapose-results.json with the coco input dataset.
"""
import argparse
import datetime
from io import TextIOWrapper
import json
from pathlib import Path
import subprocess
import yaml
import logging
logging.basicConfig()
logger = logging.getLogger('loop_alphapose_training')
logger.setLevel(logging.INFO)
class Iteration:
def __init__(self, i: int):
assert i > 0, "Iteration cannot be < 1"
self.i = i
self.nr = f"{i:04d}"
self.name = f"feedback_iteration{self.nr}"
def training_config_path(self):
return Path("./data/coco") / "_iterations" / self.nr / "256x192_res50_lr1e-3_1x.yaml"
def model_path(self):
assert self.i > 0, "Iteration 0 only used at training time"
return Path(f'exp/{self.name}-256x192_res50_lr1e-3_1x.yaml/final_DPG.pth')
def merged_results_path(self, stage: str):
assert stage in ['val', 'train']
return Path(f"./data/coco/_iterations/{self.nr}/alphapose-results-{stage}2017.json")
def interference_results_dir(self, stage: str, for_docker=False):
assert stage in ['val', 'train']
relative = "." if not for_docker else ""
return Path(f"{relative}/out/_iterations/{self.nr}_{stage}2017/")
def prev_iteration(self):
return Iteration(self.i - 1)
def next_iteration(self):
return Iteration(self.i+1)
@classmethod
def from_str(cls, input):
raise NotImplemented
def wrap_docker_cmd(cmd: list, container: str = 'alphapose'):
pwd = Path(__file__).parent.absolute()
return [
'docker', 'run',
'--rm',
'--gpus', 'all',
'--shm-size=10g',
'-v', str(pwd) + '/exp:/build/AlphaPose/exp',
'-v', str(pwd) + '/data:/build/AlphaPose/data',
'-v', str(pwd) + '/out:/out',
'-v', str(pwd) + '/detector/yolox/data:/build/AlphaPose/detector/yolox/data',
'-v', str(pwd) + '/detector/yolo/data:/build/AlphaPose/detector/yolo/data',
'-v', str(pwd) + '/pretrained_models:/build/AlphaPose/pretrained_models',
container,
*cmd
]
def create_config(iteration: Iteration):
"""
build config e.g. configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
"""
base_config = Path("../AlphaPose/configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml")
with base_config.open('r') as fp:
config = yaml.safe_load(fp)
# the first iteration simply copies config
if iteration.i > 1:
prev_iteration = iteration.prev_iteration()
config['DATASET']['TRAIN']['ANN'] = str(prev_iteration.merged_results_path('train').relative_to(config['DATASET']['TRAIN']['ROOT']))
config['DATASET']['VAL']['ANN'] = str(prev_iteration.merged_results_path('val').relative_to(config['DATASET']['TRAIN']['ROOT']))
config['DATASET']['TEST']['DET_FILE'] = f'./exp/json/{iteration.name}_test_det_yolo.json'
config['DATASET']['TEST']['ANN'] = config['DATASET']['VAL']['ANN']
new_config = iteration.training_config_path()
if not new_config.parent.exists():
logger.info(f"Make directory for config: {new_config.parent}")
new_config.parent.mkdir()
with new_config.open('w') as fp:
yaml.dump(config, fp)
return new_config
def run_cmd(cmd, in_docker):
if in_docker:
cmd = wrap_docker_cmd(cmd)
logger.info(f"Run {cmd=}")
proc = subprocess.Popen (cmd, shell=False)
proc.communicate()
def create_and_run_training(iteration: Iteration):
'''
Basically just runs
python scripts/train.py
--cfg exp/config_first.yaml
--exp-id coco_test2
'''
create_config(iteration)
cmd = [
'python', 'scripts/train.py',
'--cfg', str(iteration.training_config_path()),
'--exp-id', iteration.name
]
run_cmd(cmd, in_docker = True)
def run_inferences(iteration: Iteration):
'''
create new train & validation datasets by basically running:
python scripts/demo_inference.py
--cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
--checkpoint exp/coco_test1-256x192_res50_lr1e-3_1x.yaml/final_DPG.pth
--gpus 0
--indir data/coco/train2017
--outdir /out/first_train2017/
--format coco
--eval
python scripts/demo_inference.py
--cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
--checkpoint exp/coco_test1-256x192_res50_lr1e-3_1x.yaml/final_DPG.pth
--gpus 0
--indir data/coco/val2017
--outdir /out/first_val2017/
--format coco
--eval
'''
base_cmd = [
'python', 'scripts/demo_inference.py',
'--cfg', str(iteration.training_config_path()),
'--checkpoint', str(iteration.model_path()),
'--gpus', '0',
'--format', 'coco',
'--eval',
]
cmd_infer_train = base_cmd.copy()
cmd_infer_train.extend([
'--indir', 'data/coco/train2017',
'--outdir', iteration.interference_results_dir('train', for_docker=True),
])
cmd_infer_val = base_cmd.copy()
cmd_infer_val.extend([
'--indir', 'data/coco/val2017',
'--outdir', iteration.interference_results_dir('val', for_docker=True),
])
run_cmd(cmd_infer_train, in_docker=True)
run_cmd(cmd_infer_val, in_docker=True)
def coco_alphapose_merge_results_for_iteration(iteration: Iteration):
for stage in ['val', 'train']:
coco_alphapose_merge_results(
Path(f"data/coco/annotations/person_keypoints_{stage}2017.json"),
iteration.interference_results_dir(stage) / "alphapose-results.json",
iteration.merged_results_path(stage)
)
def done_training(iteration: Iteration) -> bool:
return iteration.model_path().exists()
def done_interference(iteration: Iteration) -> bool:
return all([
(iteration.interference_results_dir(stage) / "alphapose-results.json").exists() for stage in ['train','val']
])
def done_merge_results(iteration: Iteration) -> bool:
return all([
iteration.merged_results_path(stage).exists() for stage in ['train','val']
])
def run_iteration(iteration: Iteration):
if not done_training(iteration):
create_and_run_training(iteration)
else:
logger.info(f"Training exists {iteration.name}")
if not done_interference(iteration):
run_inferences(iteration)
else:
logger.info(f"Inference results exist {iteration.name}")
if not done_merge_results(iteration):
coco_alphapose_merge_results_for_iteration(iteration)
else:
logger.info(f"Merged annotations exist {iteration.name}")
def coco_alphapose_merge_results(annotations_file: Path, results_file: Path, out_file: Path):
today = datetime.datetime.now().strftime("%Y/%m/%d")
info = {"description": "COCO 2017 Dataset, modified by Ruben van de Ven","url": "http://cocodataset.org","version": "0.1","year": 2023,"contributor": "COCO Consortium, Ruben van de Ven","date_created": today}
annotations = json.loads(annotations_file.read_text())
results = json.loads(results_file.read_text())
# annotations_ann:list = annotations['annotations']
# id_counts = {}
for i, result in enumerate(results):
if type(result['image_id']) == str:
result['image_id'] = int(result['image_id'][:-4])
result['id'] = i
result['iscrowd'] = 0 # TODO make sure this is a right terminology/assumption (what is this crowd here anyway individaul/crowd?)
result['bbox'] = result['box'] # TODO result.pop('box') to rename instead of copy
result['area'] = 1 # TODO : for now to bypass ignore in alphapose/datasets/mscoco.py:87
result['num_keypoints'] = 17 # TODO : verify that this is indeed always all points
# There can be multiple annotations per image. Try to match the originals by keeping track
# of their order of occurence
# if result['image_id'] not in id_counts:
# id_counts[result['image_id']] = 0
# # find matching annotations in original
# origs = list(filter(lambda ann: ann['image_id'] == result['image_id'], annotations_ann))
# assert len(origs) > id_counts[result['image_id']], f"Len should be one, found {len(origs)} for {result['image_id']}: {origs=}"
# orig = origs[id_counts[result['image_id']]]
# id_counts[result['image_id']] += 1
# result['id'] = orig['id'] # we keep track of the original id
annotations['annotations'] = results
annotations['info'] = info
with out_file.open('w') as fp:
json.dump(annotations, fp)
logger.info(f'wrote to {out_file.as_posix()}')
if __name__ == "__main__":
i = 1
while True:
iteration = Iteration(i)
logger.info(f"Run iteration {iteration.name}")
run_iteration(iteration)
i+=1
# parser = argparse.ArgumentParser(description='Merge alphapose-results.json with an input dataset')
# parser.add_argument('--annotations-file', required=True, type=argparse.FileType('r'),
# help='an annotations file from the COCO dataset (eg. person_keypoints_train2017.json)')
# parser.add_argument('--results-file', required=True, type=argparse.FileType('r'),
# help='path to the alphapose-results.json')
# parser.add_argument('--out-file', required=True, type=argparse.FileType('w'),
# help='the filename of the merged result')
# args = parser.parse_args()
# coco_alphapose_merge_results(args.annotations_file, args.results_file, args.out_file)

1399
poetry.lock generated Normal file

File diff suppressed because it is too large Load diff

24
pyproject.toml Normal file
View file

@ -0,0 +1,24 @@
[tool.poetry]
name = "alphapose-loop"
version = "0.1.0"
description = ""
authors = ["Ruben van de Ven <git@rubenvandeven.com>"]
readme = "README.md"
#packages = [{include = "alphapose_loop"}]
[tool.poetry.dependencies]
python = "^3.9"
numpy = "^1.24.2"
pycocotools = "^2.0.6"
tqdm = "^4.65.0"
coloredlogs = "^15.0.1"
PyYAML = "^6.0"
Pillow = "^9.4.0"
[tool.poetry.group.dev.dependencies]
ipykernel = "^6.21.3"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

61
run_test_inferences.py Normal file
View file

@ -0,0 +1,61 @@
from pathlib import Path
import shutil
from loop_alphapose_training import run_cmd, Iteration
import logging
import coloredlogs
logger = logging.getLogger(__name__)
coloredlogs.install(level=logging.INFO)
def collate(iterations):
path = Path(f'out/test_imgs_{iterations[1].nr}/vis')
images = [x for x in path.iterdir() if x.is_file()]
for img in images:
logger.info(f"collate {img.name}")
target_dir = Path(f'out/test_imgs_loops/{img.stem}/')
target_dir.mkdir(parents=True, exist_ok=True)
for iteration in iterations:
try:
src = Path(f'out/test_imgs_{iteration.nr}/vis/') / img.name
target = target_dir / (iteration.nr + img.suffix)
logger.info(f"\tcopy {src} to {target}")
shutil.copy(src, target)
except Exception as e:
logger.exception(e)
# collate([Iteration(i) for i in range(2,7)])
# exit()
if __name__ == '__main__':
i = 0
iterations = []
while True:
i+=1
iteration = Iteration(i)
path = iteration.model_path()
if not path.exists():
logger.warning(f"Model for iteration {iteration.nr} doesn't exist")
break
iterations.append(iteration)
cmd = [
'python', 'scripts/demo_inference.py',
'--cfg', str(iteration.training_config_path()),
'--checkpoint', str(iteration.model_path()),
'--gpus', '0',
'--format', 'coco',
'--indir', 'data/test_imgs',
'--outdir', f'/out/test_imgs_{iteration.nr}',
'--save_img'
]
logger.info(f"Running {cmd}")
run_cmd(cmd, in_docker=True)
# break
collate(iterations)