Add script to convert alphapose-results to coco-in
This commit is contained in:
parent
d575e64884
commit
5aa2d0fac1
1 changed files with 70 additions and 0 deletions
70
loop_alphapose_training.py
Normal file
70
loop_alphapose_training.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
"""
|
||||||
|
TODO this script runs Alphapose's train.py, the created model is used to re-annotate the training-images, which is then fed back into the system
|
||||||
|
|
||||||
|
For now the only thing it does is that it merges alphapose-results.json with the coco input dataset.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import datetime
|
||||||
|
from io import TextIOWrapper
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
|
||||||
|
logging.basicConfig()
|
||||||
|
logger = logging.getLogger('loop_alphapose_training')
|
||||||
|
logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
|
def coco_alphapose_merge_results(annotations_file: TextIOWrapper, results_file:TextIOWrapper, out_file: TextIOWrapper):
|
||||||
|
today = datetime.datetime.now().strftime("%Y/%m/%d")
|
||||||
|
info = {"description": "COCO 2017 Dataset, modified by Ruben van de Ven","url": "http://cocodataset.org","version": "0.1","year": 2023,"contributor": "COCO Consortium, Ruben van de Ven","date_created": today}
|
||||||
|
annotations = json.loads(annotations_file.read())
|
||||||
|
results = json.loads(results_file.read())
|
||||||
|
annotations_ann:list = annotations['annotations']
|
||||||
|
|
||||||
|
id_counts = {}
|
||||||
|
|
||||||
|
|
||||||
|
for i, result in enumerate(results):
|
||||||
|
if type(result['image_id']) == str:
|
||||||
|
result['image_id'] = int(result['image_id'][:-4])
|
||||||
|
|
||||||
|
result['id'] = i
|
||||||
|
result['iscrowd'] = 0 # TODO make sure this is a right terminology/assumption (what is this crowd here anyway individaul/crowd?)
|
||||||
|
result['bbox'] = result['box'] # TODO result.pop('box') to rename instead of copy
|
||||||
|
result['area'] = 1 # TODO : for now to bypass ignore in alphapose/datasets/mscoco.py:87
|
||||||
|
result['num_keypoints'] = 17 # TODO : verify that this is indeed always all points
|
||||||
|
|
||||||
|
# There can be multiple annotations per image. Try to match the originals by keeping track
|
||||||
|
# of their order of occurence
|
||||||
|
# if result['image_id'] not in id_counts:
|
||||||
|
# id_counts[result['image_id']] = 0
|
||||||
|
|
||||||
|
# # find matching annotations in original
|
||||||
|
# origs = list(filter(lambda ann: ann['image_id'] == result['image_id'], annotations_ann))
|
||||||
|
# assert len(origs) > id_counts[result['image_id']], f"Len should be one, found {len(origs)} for {result['image_id']}: {origs=}"
|
||||||
|
# orig = origs[id_counts[result['image_id']]]
|
||||||
|
# id_counts[result['image_id']] += 1
|
||||||
|
|
||||||
|
# result['id'] = orig['id'] # we keep track of the original id
|
||||||
|
|
||||||
|
annotations['annotations'] = results
|
||||||
|
annotations['info'] = info
|
||||||
|
|
||||||
|
json.dump(annotations,out_file)
|
||||||
|
logger.info(f'wrote to {out_file.name}')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Merge alphapose-results.json with an input dataset')
|
||||||
|
parser.add_argument('--annotations-file', required=True, type=argparse.FileType('r'),
|
||||||
|
help='an annotations file from the COCO dataset (eg. person_keypoints_train2017.json)')
|
||||||
|
parser.add_argument('--results-file', required=True, type=argparse.FileType('r'),
|
||||||
|
help='path to the alphapose-results.json')
|
||||||
|
parser.add_argument('--out-file', required=True, type=argparse.FileType('w'),
|
||||||
|
help='the filename of the merged result')
|
||||||
|
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
coco_alphapose_merge_results(args.annotations_file, args.results_file, args.out_file)
|
Loading…
Reference in a new issue