Trajectron-plus-plus/trajectron/environment/scene_graph.py
2020-12-09 22:42:06 -05:00

493 lines
19 KiB
Python

import numpy as np
from scipy.spatial.distance import pdist, squareform
import scipy.signal as ss
from collections import defaultdict
import warnings
from .node import Node
class Edge(object):
def __init__(self, curr_node, other_node):
self.id = self.get_edge_id(curr_node, other_node)
self.type = self.get_edge_type(curr_node, other_node)
self.curr_node = curr_node
self.other_node = other_node
@staticmethod
def get_edge_id(n1, n2):
raise NotImplementedError("Use one of the Edge subclasses!")
@staticmethod
def get_str_from_types(nt1, nt2):
raise NotImplementedError("Use one of the Edge subclasses!")
@staticmethod
def get_edge_type(n1, n2):
raise NotImplementedError("Use one of the Edge subclasses!")
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.id == other.id)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.id)
def __repr__(self):
return self.id
class UndirectedEdge(Edge):
def __init__(self, curr_node, other_node):
super(UndirectedEdge, self).__init__(curr_node, other_node)
@staticmethod
def get_edge_id(n1, n2):
return '-'.join(sorted([str(n1), str(n2)]))
@staticmethod
def get_str_from_types(nt1, nt2):
return '-'.join(sorted([nt1.name, nt2.name]))
@staticmethod
def get_edge_type(n1, n2):
return '-'.join(sorted([n1.type.name, n2.type.name]))
class DirectedEdge(Edge):
def __init__(self, curr_node, other_node):
super(DirectedEdge, self).__init__(curr_node, other_node)
@staticmethod
def get_edge_id(n1, n2):
return '->'.join([str(n1), str(n2)])
@staticmethod
def get_str_from_types(nt1, nt2):
return '->'.join([nt1.name, nt2.name])
@staticmethod
def get_edge_type(n1, n2):
return '->'.join([n1.type.name, n2.type.name])
class TemporalSceneGraph(object):
def __init__(self,
edge_radius,
nodes=None,
adj_cube=np.zeros((1, 0, 0)),
weight_cube=np.zeros((1, 0, 0)),
node_type_mat=np.zeros((0, 0)),
edge_scaling=None):
self.edge_radius = edge_radius
self.nodes = nodes
if nodes is None:
self.nodes = np.array([])
self.adj_cube = adj_cube
self.weight_cube = weight_cube
self.node_type_mat = node_type_mat
self.adj_mat = np.max(self.adj_cube, axis=0).clip(max=1.0)
self.edge_scaling = edge_scaling
self.node_index_lookup = None
self.calculate_node_index_lookup()
def calculate_node_index_lookup(self):
node_index_lookup = dict()
for i, node in enumerate(self.nodes):
node_index_lookup[node] = i
self.node_index_lookup = node_index_lookup
def get_num_edges(self, t=0):
return np.sum(self.adj_cube[t]) // 2
def get_index(self, node):
return self.node_index_lookup[node]
@classmethod
def create_from_temp_scene_dict(cls,
scene_temp_dict,
attention_radius,
duration=1,
edge_addition_filter=None,
edge_removal_filter=None,
online=False):
"""
Construct a spatiotemporal graph from node positions in a dataset.
:param scene_temp_dict: Dict with all nodes in scene as keys and np.ndarray with positions as value
:param attention_radius: Attention radius dict.
:param duration: Temporal duration of the graph.
:param edge_addition_filter: -
:param edge_removal_filter: -
:return: TemporalSceneGraph
"""
nodes = scene_temp_dict.keys()
N = len(nodes)
total_timesteps = duration
if N == 0:
return TemporalSceneGraph(attention_radius)
position_cube = np.full((total_timesteps, N, 2), np.nan)
adj_cube = np.zeros((total_timesteps, N, N), dtype=np.int8)
dist_cube = np.zeros((total_timesteps, N, N), dtype=np.float)
node_type_mat = np.zeros((N, N), dtype=np.int8)
node_attention_mat = np.zeros((N, N), dtype=np.float)
for node_idx, node in enumerate(nodes):
if online:
# RingBuffers do not have a fixed constant size. Instead, they grow up to their capacity. Thus,
# we need to fill the values preceding the RingBuffer values with NaNs to make them fill the
# position_cube.
position_cube[-scene_temp_dict[node].shape[0]:, node_idx] = scene_temp_dict[node]
else:
position_cube[:, node_idx] = scene_temp_dict[node]
node_type_mat[:, node_idx] = node.type.value
for node_idx_from, node_from in enumerate(nodes):
node_attention_mat[node_idx_from, node_idx] = attention_radius[(node_from.type, node.type)]
np.fill_diagonal(node_type_mat, 0)
for timestep in range(position_cube.shape[0]):
dists = squareform(pdist(position_cube[timestep], metric='euclidean'))
# Put a 1 for all agent pairs which are closer than the edge_radius.
# Can produce a warning as dists can be nan if no data for node is available.
# This is accepted as nan <= x evaluates to False
with warnings.catch_warnings():
warnings.simplefilter("ignore")
adj_matrix = (dists <= node_attention_mat).astype(np.int8) * node_type_mat
# Remove self-loops.
np.fill_diagonal(adj_matrix, 0)
adj_cube[timestep] = adj_matrix
dist_cube[timestep] = dists
dist_cube[np.isnan(dist_cube)] = 0.
weight_cube = np.divide(1.,
dist_cube,
out=np.zeros_like(dist_cube),
where=(dist_cube > 0.))
edge_scaling = None
if edge_addition_filter is not None and edge_removal_filter is not None:
edge_scaling = cls.calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter)
tsg = cls(attention_radius,
np.array(list(nodes)),
adj_cube, weight_cube,
node_type_mat,
edge_scaling=edge_scaling)
return tsg
@staticmethod
def calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter):
shifted_right = np.pad(adj_cube, ((len(edge_addition_filter) - 1, 0), (0, 0), (0, 0)), 'constant', constant_values=0)
new_edges = np.minimum(
ss.convolve(shifted_right, np.reshape(edge_addition_filter, (-1, 1, 1)), 'full'), 1.
)[(len(edge_addition_filter) - 1):-(len(edge_addition_filter) - 1)]
new_edges[adj_cube == 0] = 0
result = np.minimum(
ss.convolve(new_edges, np.reshape(edge_removal_filter, (-1, 1, 1)), 'full'), 1.
)[:-(len(edge_removal_filter) - 1)]
return result
def to_scene_graph(self, t, t_hist=0, t_fut=0):
"""
Creates a Scene Graph from a Temporal Scene Graph
:param t: Time in Temporal Scene Graph for which Scene Graph is created.
:param t_hist: Number of history timesteps which are considered to form edges in Scene Graph.
:param t_fut: Number of future timesteps which are considered to form edges in Scene Graph.
:return: SceneGraph
"""
lower_t = np.clip(t-t_hist, a_min=0, a_max=None)
higher_t = np.clip(t + t_fut + 1, a_min=None, a_max=self.adj_cube.shape[0] + 1)
adj_mat = np.max(self.adj_cube[lower_t:higher_t], axis=0)
weight_mat = np.max(self.weight_cube[lower_t:higher_t], axis=0)
return SceneGraph(self.edge_radius,
self.nodes,
adj_mat,
weight_mat,
self.node_type_mat,
self.node_index_lookup,
edge_scaling=self.edge_scaling[t] if self.edge_scaling is not None else None)
class SceneGraph(object):
def __init__(self,
edge_radius,
nodes=None,
adj_mat=np.zeros((0, 0)),
weight_mat=np.zeros((0, 0)),
node_type_mat=np.zeros((0, 0)),
node_index_lookup=None,
edge_scaling=None):
self.edge_radius = edge_radius
self.nodes = nodes
if nodes is None:
self.nodes = np.array([])
self.node_type_mat = node_type_mat
self.adj_mat = adj_mat
self.weight_mat = weight_mat
self.edge_scaling = edge_scaling
self.node_index_lookup = node_index_lookup
def get_index(self, node):
return self.node_index_lookup[node]
def get_num_edges(self):
return np.sum(self.adj_mat) // 2
def get_neighbors(self, node, node_type):
"""
Get all neighbors of a node.
:param node: Node for which all neighbors are returned.
:param node_type: Specifies node types which are returned.
:return: List of all neighbors.
"""
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
mask = ((self.node_type_mat[node_index] == node_type.value) * connection_mask)
return self.nodes[mask]
def get_edge_scaling(self, node=None):
if node is None:
return self.edge_scaling
else:
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
return self.edge_scaling[node_index, connection_mask]
def get_edge_weight(self, node=None):
if node is None:
return self.weight_mat
else:
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
return self.weight_mat[node_index, connection_mask]
def get_connection_mask(self, node_index):
if self.edge_scaling is None: # We do not use edge scaling
return self.adj_mat[node_index] > 0.
else:
return self.edge_scaling[node_index] > 1e-2
def __sub__(self, other):
new_nodes = [node for node in self.nodes if node not in other.nodes]
removed_nodes = [node for node in other.nodes if node not in self.nodes]
our_types = set(node.type for node in self.nodes)
other_types = set(node.type for node in other.nodes)
all_node_types = our_types | other_types
new_neighbors = defaultdict(lambda: defaultdict(set))
for node in self.nodes:
if node in removed_nodes:
continue
if node in other.nodes:
for node_type in all_node_types:
new_items = set(self.get_neighbors(node, node_type)) - set(other.get_neighbors(node, node_type))
if len(new_items) > 0:
new_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = new_items
else:
for node_type in our_types:
neighbors = self.get_neighbors(node, node_type)
if len(neighbors) > 0:
new_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = set(neighbors)
removed_neighbors = defaultdict(lambda: defaultdict(set))
for node in other.nodes:
if node in removed_nodes:
continue
if node in self.nodes:
for node_type in all_node_types:
removed_items = set(other.get_neighbors(node, node_type)) - set(self.get_neighbors(node, node_type))
if len(removed_items) > 0:
removed_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = removed_items
else:
for node_type in other_types:
neighbors = other.get_neighbors(node, node_type)
if len(neighbors) > 0:
removed_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = set(neighbors)
return new_nodes, removed_nodes, new_neighbors, removed_neighbors
if __name__ == '__main__':
from environment import NodeTypeEnum
import time
# # # # # # # # # # # # # # # # #
# Testing edge mask calculation #
# # # # # # # # # # # # # # # # #
B = np.array([[0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0]])[:, :, np.newaxis, np.newaxis]
print(B.shape)
edge_addition_filter = [0.25, 0.5, 0.75, 1.0]
edge_removal_filter = [1.0, 0.5, 0.0]
for i in range(B.shape[0]):
A = B[i] # (time, N, N)
print(A[:, 0, 0])
start = time.time()
new_edges = np.minimum(ss.convolve(A, np.reshape(edge_addition_filter, (-1, 1, 1)), 'full'), 1.)[(len(edge_addition_filter) - 1):]
old_edges = np.minimum(ss.convolve(A, np.reshape(edge_removal_filter, (-1, 1, 1)), 'full'), 1.)[:-(len(edge_removal_filter) - 1)]
res = np.minimum(new_edges + old_edges, 1.)[:, 0, 0]
end = time.time()
print(end - start)
print(res)
start = time.time()
res = TemporalSceneGraph.calculate_edge_scaling(A, edge_addition_filter, edge_removal_filter)[:, 0, 0]
end = time.time()
print(end - start)
print(res)
print('-'*40)
# # # # # # # # # # # # # # #
# Testing graph subtraction #
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
node_type_list = ['PEDESTRIAN',
'BICYCLE',
'VEHICLE']
nte = NodeTypeEnum(node_type_list)
attention_radius = dict()
attention_radius[(nte.PEDESTRIAN, nte.PEDESTRIAN)] = 5.0
attention_radius[(nte.PEDESTRIAN, nte.VEHICLE)] = 20.0
attention_radius[(nte.PEDESTRIAN, nte.BICYCLE)] = 10.0
attention_radius[(nte.VEHICLE, nte.PEDESTRIAN)] = 20.0
attention_radius[(nte.VEHICLE, nte.VEHICLE)] = 20.0
attention_radius[(nte.VEHICLE, nte.BICYCLE)] = 20.0
attention_radius[(nte.BICYCLE, nte.PEDESTRIAN)] = 10.0
attention_radius[(nte.BICYCLE, nte.VEHICLE)] = 20.0
attention_radius[(nte.BICYCLE, nte.BICYCLE)] = 10.0
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([1, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([1, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([20, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([10, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([20, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([0, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='2'): np.array([10, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([12, 1]),
Node(nte.PEDESTRIAN, node_id='4'): np.array([13, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)