Trajectron-plus-plus/trajectron/train.py
2024-12-29 20:39:21 +01:00

451 lines
23 KiB
Python

import logging
from typing import List
import torch
from torch import nn, optim, utils
import numpy as np
import os
import time
import dill
import json
import random
import pathlib
import warnings
from tqdm import tqdm
import trajectron.visualization as visualization
import trajectron.evaluation as evaluation
import matplotlib.pyplot as plt
from trajectron.argument_parser import args
from trajectron.model.trajectron import Trajectron
from trajectron.model.model_registrar import ModelRegistrar
from trajectron.model.model_utils import cyclical_lr
from trajectron.model.dataset import EnvironmentDataset, collate
from trajectron.environment import Environment, Scene, Node
from tensorboardX import SummaryWriter
# torch.autograd.set_detect_anomaly(True)
if not torch.cuda.is_available() or args.device == 'cpu':
args.device = torch.device('cpu')
else:
if torch.cuda.device_count() == 1:
# If you have CUDA_VISIBLE_DEVICES set, which you should,
# then this will prevent leftover flag arguments from
# messing with the device allocation.
args.device = 'cuda:0'
args.device = torch.device(args.device)
if args.eval_device is None:
args.eval_device = torch.device('cpu')
# This is needed for memory pinning using a DataLoader (otherwise memory is pinned to cuda:0 by default)
torch.cuda.set_device(args.device)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def main():
# Load hyperparameters from json
if not os.path.exists(args.conf):
print('Config json not found!')
with open(args.conf, 'r', encoding='utf-8') as conf_json:
hyperparams = json.load(conf_json)
# Add hyperparams from arguments
hyperparams['dynamic_edges'] = args.dynamic_edges
hyperparams['edge_state_combine_method'] = args.edge_state_combine_method
hyperparams['edge_influence_combine_method'] = args.edge_influence_combine_method
hyperparams['edge_addition_filter'] = args.edge_addition_filter
hyperparams['edge_removal_filter'] = args.edge_removal_filter
hyperparams['batch_size'] = args.batch_size
hyperparams['k_eval'] = args.k_eval
hyperparams['offline_scene_graph'] = args.offline_scene_graph
hyperparams['incl_robot_node'] = args.incl_robot_node
hyperparams['node_freq_mult_train'] = args.node_freq_mult_train
hyperparams['node_freq_mult_eval'] = args.node_freq_mult_eval
hyperparams['scene_freq_mult_train'] = args.scene_freq_mult_train
hyperparams['scene_freq_mult_eval'] = args.scene_freq_mult_eval
hyperparams['scene_freq_mult_viz'] = args.scene_freq_mult_viz
hyperparams['edge_encoding'] = not args.no_edge_encoding
hyperparams['use_map_encoding'] = args.map_encoding
hyperparams['augment'] = args.augment
hyperparams['override_attention_radius'] = args.override_attention_radius
print('-----------------------')
print('| TRAINING PARAMETERS |')
print('-----------------------')
print('| batch_size: %d' % args.batch_size)
print('| device: %s' % args.device)
print('| eval_device: %s' % args.eval_device)
print('| Offline Scene Graph Calculation: %s' % args.offline_scene_graph)
print('| EE state_combine_method: %s' % args.edge_state_combine_method)
print('| EIE scheme: %s' % args.edge_influence_combine_method)
print('| dynamic_edges: %s' % args.dynamic_edges)
print('| robot node: %s' % args.incl_robot_node)
print('| edge_addition_filter: %s' % args.edge_addition_filter)
print('| edge_removal_filter: %s' % args.edge_removal_filter)
print('| MHL: %s' % hyperparams['minimum_history_length'])
print('| PH: %s' % hyperparams['prediction_horizon'])
print('-----------------------')
# TODO)) gets rid of torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.
warnings.filterwarnings("ignore")
log_writer = None
model_dir = None
if not args.debug:
# Create the log and model directiory if they're not present.
model_dir = os.path.join(args.log_dir,
'models_' + time.strftime('%Y%m%d_%H_%M_%S', time.localtime()) + args.log_tag)
pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True)
# Save config to model directory
with open(os.path.join(model_dir, 'config.json'), 'w') as conf_json:
json.dump(hyperparams, conf_json)
log_writer = SummaryWriter(log_dir=model_dir)
# Load training and evaluation environments and scenes
train_scenes = []
train_data_path = os.path.join(args.data_dir, args.train_data_dict)
with open(train_data_path, 'rb') as f:
train_env = dill.load(f, encoding='latin1')
for attention_radius_override in args.override_attention_radius:
node_type1, node_type2, attention_radius = attention_radius_override.split(' ')
train_env.attention_radius[(node_type1, node_type2)] = float(attention_radius)
if train_env.robot_type is None and hyperparams['incl_robot_node']:
train_env.robot_type = train_env.NodeType[0] # TODO: Make more general, allow the user to specify?
for scene in train_env.scenes:
scene.add_robot_from_nodes(train_env.robot_type)
train_scenes = train_env.scenes
train_scenes_sample_probs = train_env.scenes_freq_mult_prop if args.scene_freq_mult_train else None
train_dataset = EnvironmentDataset(train_env,
hyperparams['state'],
hyperparams['pred_state'],
scene_freq_mult=hyperparams['scene_freq_mult_train'],
node_freq_mult=hyperparams['node_freq_mult_train'],
hyperparams=hyperparams,
min_history_timesteps=hyperparams['minimum_history_length'],
min_future_timesteps=hyperparams['prediction_horizon'],
return_robot=not args.incl_robot_node)
train_data_loader = dict()
logging.debug(f"{train_scenes=}")
for node_type_data_set in train_dataset:
if len(node_type_data_set) == 0:
continue
node_type_dataloader = utils.data.DataLoader(node_type_data_set,
collate_fn=collate,
pin_memory=False if args.device == 'cpu' else True,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.preprocess_workers)
train_data_loader[node_type_data_set.node_type] = node_type_dataloader
print(f"Loaded training data from {train_data_path}")
eval_scenes = []
eval_scenes_sample_probs = None
if args.eval_every is not None:
eval_data_path = os.path.join(args.data_dir, args.eval_data_dict)
with open(eval_data_path, 'rb') as f:
eval_env = dill.load(f, encoding='latin1')
for attention_radius_override in args.override_attention_radius:
node_type1, node_type2, attention_radius = attention_radius_override.split(' ')
eval_env.attention_radius[(node_type1, node_type2)] = float(attention_radius)
if eval_env.robot_type is None and hyperparams['incl_robot_node']:
eval_env.robot_type = eval_env.NodeType[0] # TODO: Make more general, allow the user to specify?
for scene in eval_env.scenes:
scene.add_robot_from_nodes(eval_env.robot_type)
eval_scenes: List[Scene] = eval_env.scenes
eval_scenes_sample_probs = eval_env.scenes_freq_mult_prop if args.scene_freq_mult_eval else None
eval_dataset = EnvironmentDataset(eval_env,
hyperparams['state'],
hyperparams['pred_state'],
scene_freq_mult=hyperparams['scene_freq_mult_eval'],
node_freq_mult=hyperparams['node_freq_mult_eval'],
hyperparams=hyperparams,
min_history_timesteps=hyperparams['minimum_history_length'],
min_future_timesteps=hyperparams['prediction_horizon'],
return_robot=not args.incl_robot_node)
eval_data_loader = dict()
logging.debug(f"{eval_scenes=}")
for node_type_data_set in eval_dataset:
if len(node_type_data_set) == 0:
continue
node_type_dataloader = utils.data.DataLoader(node_type_data_set,
collate_fn=collate,
pin_memory=False if args.eval_device == 'cpu' else True,
batch_size=args.eval_batch_size,
shuffle=True,
num_workers=args.preprocess_workers)
eval_data_loader[node_type_data_set.node_type] = node_type_dataloader
print(f"Loaded evaluation data from {eval_data_path}")
# Offline Calculate Scene Graph
if hyperparams['offline_scene_graph'] == 'yes':
print(f"Offline calculating scene graphs")
for i, scene in enumerate(train_scenes):
scene.calculate_scene_graph(train_env.attention_radius,
hyperparams['edge_addition_filter'],
hyperparams['edge_removal_filter'])
print(f"Created Scene Graph for Training Scene {i}")
for i, scene in enumerate(eval_scenes):
scene.calculate_scene_graph(eval_env.attention_radius,
hyperparams['edge_addition_filter'],
hyperparams['edge_removal_filter'])
print(f"Created Scene Graph for Evaluation Scene {i}")
model_registrar = ModelRegistrar(model_dir, args.device)
trajectron = Trajectron(model_registrar,
hyperparams,
log_writer,
args.device)
trajectron.set_environment(train_env)
trajectron.set_annealing_params()
print('Created Training Model.')
eval_trajectron = None
if args.eval_every is not None or args.vis_every is not None:
eval_trajectron = Trajectron(model_registrar,
hyperparams,
log_writer,
args.eval_device)
eval_trajectron.set_environment(eval_env)
eval_trajectron.set_annealing_params()
print('Created Evaluation Model.')
optimizer = dict()
lr_scheduler = dict()
for node_type in train_env.NodeType:
if node_type not in hyperparams['pred_state']:
continue
optimizer[node_type] = optim.Adam([{'params': model_registrar.get_all_but_name_match('map_encoder').parameters()},
{'params': model_registrar.get_name_match('map_encoder').parameters(), 'lr':0.0008}], lr=hyperparams['learning_rate'])
# Set Learning Rate
if hyperparams['learning_rate_style'] == 'const':
lr_scheduler[node_type] = optim.lr_scheduler.ExponentialLR(optimizer[node_type], gamma=1.0)
elif hyperparams['learning_rate_style'] == 'exp':
lr_scheduler[node_type] = optim.lr_scheduler.ExponentialLR(optimizer[node_type],
gamma=hyperparams['learning_decay_rate'])
#################################
# TRAINING #
#################################
curr_iter_node_type = {node_type: 0 for node_type in train_data_loader.keys()}
for epoch in range(1, args.train_epochs + 1):
model_registrar.to(args.device)
train_dataset.augment = args.augment
# print('train', curr_iter_node_type)
for node_type, data_loader in train_data_loader.items():
curr_iter = curr_iter_node_type[node_type]
pbar = tqdm(data_loader, ncols=80)
for batch in pbar:
trajectron.set_curr_iter(curr_iter)
trajectron.step_annealers(node_type)
optimizer[node_type].zero_grad()
train_loss = trajectron.train_loss(batch, node_type)
pbar.set_description(f"Epoch {epoch}, {node_type} L: {train_loss.item():.2f}")
train_loss.backward()
# Clipping gradients.
if hyperparams['grad_clip'] is not None:
nn.utils.clip_grad_value_(model_registrar.parameters(), hyperparams['grad_clip'])
optimizer[node_type].step()
# Stepping forward the learning rate scheduler and annealers.
lr_scheduler[node_type].step()
if not args.debug:
log_writer.add_scalar(f"{node_type}/train/learning_rate",
lr_scheduler[node_type].get_lr()[0],
curr_iter)
log_writer.add_scalar(f"{node_type}/train/loss", train_loss, curr_iter)
curr_iter += 1
curr_iter_node_type[node_type] = curr_iter
train_dataset.augment = False
if args.eval_every is not None or args.vis_every is not None:
eval_trajectron.set_curr_iter(epoch)
#################################
# VISUALIZATION #
#################################
if args.vis_every is not None and not args.debug and epoch % args.vis_every == 0 and epoch > 0:
max_hl = hyperparams['maximum_history_length']
ph = hyperparams['prediction_horizon']
with torch.no_grad():
# Predict random timestep to plot for train data set
if args.scene_freq_mult_viz:
scene = np.random.choice(train_scenes, p=train_scenes_sample_probs)
else:
scene = np.random.choice(train_scenes)
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
predictions = trajectron.predict(scene,
timestep,
ph,
min_future_timesteps=ph,
z_mode=True,
gmm_mode=True,
all_z_sep=False,
full_dist=False)
# Plot predicted timestep for random scene
fig, ax = plt.subplots(figsize=(10, 10))
visualization.visualize_prediction(ax,
predictions,
scene.dt,
max_hl=max_hl,
ph=ph,
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
ax.set_title(f"{scene.name}-t: {timestep}")
log_writer.add_figure('train/prediction', fig, epoch)
model_registrar.to(args.eval_device)
# Predict random timestep to plot for eval data set
if args.scene_freq_mult_viz:
scene = np.random.choice(eval_scenes, p=eval_scenes_sample_probs)
else:
scene = np.random.choice(eval_scenes)
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
predictions = eval_trajectron.predict(scene,
timestep,
ph,
num_samples=20,
min_future_timesteps=ph,
z_mode=False,
full_dist=False)
# Plot predicted timestep for random scene
fig, ax = plt.subplots(figsize=(10, 10))
visualization.visualize_prediction(ax,
predictions,
scene.dt,
max_hl=max_hl,
ph=ph,
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
ax.set_title(f"{scene.name}-t: {timestep}")
log_writer.add_figure('eval/prediction', fig, epoch)
# Predict random timestep to plot for eval data set
predictions = eval_trajectron.predict(scene,
timestep,
ph,
min_future_timesteps=ph,
z_mode=True,
gmm_mode=True,
all_z_sep=True,
full_dist=False)
# Plot predicted timestep for random scene
fig, ax = plt.subplots(figsize=(10, 10))
visualization.visualize_prediction(ax,
predictions,
scene.dt,
max_hl=max_hl,
ph=ph,
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
ax.set_title(f"{scene.name}-t: {timestep}")
log_writer.add_figure('eval/prediction_all_z', fig, epoch)
#################################
# EVALUATION #
#################################
if args.eval_every is not None and not args.debug and epoch % args.eval_every == 0 and epoch > 0:
max_hl = hyperparams['maximum_history_length']
ph = hyperparams['prediction_horizon']
model_registrar.to(args.eval_device)
with torch.no_grad():
# Calculate evaluation loss
for node_type, data_loader in eval_data_loader.items():
eval_loss = []
print(f"Starting Evaluation @ epoch {epoch} for node type: {node_type}")
pbar = tqdm(data_loader, ncols=80)
for batch in pbar:
eval_loss_node_type = eval_trajectron.eval_loss(batch, node_type)
pbar.set_description(f"Epoch {epoch}, {node_type} L: {eval_loss_node_type.item():.2f}")
eval_loss.append({node_type: {'nll': [eval_loss_node_type]}})
del batch
evaluation.log_batch_errors(eval_loss,
log_writer,
f"{node_type}/eval_loss",
epoch)
# Predict batch timesteps for evaluation dataset evaluation
eval_batch_errors = []
for scene in tqdm(eval_scenes, desc='Sample Evaluation', ncols=80):
logging.debug(f"{scene}, {scene.timesteps=}, {len(scene.nodes)}")
timesteps = scene.sample_timesteps(args.eval_batch_size)
predictions = eval_trajectron.predict(scene,
timesteps,
ph,
num_samples=50,
min_future_timesteps=ph,
full_dist=False)
eval_batch_errors.append(evaluation.compute_batch_statistics(predictions,
scene.dt,
max_hl=max_hl,
ph=ph,
node_type_enum=eval_env.NodeType,
map=scene.map))
evaluation.log_batch_errors(eval_batch_errors,
log_writer,
'eval',
epoch,
bar_plot=['kde'],
box_plot=['ade', 'fde'])
# Predict maximum likelihood batch timesteps for evaluation dataset evaluation
eval_batch_errors_ml = []
for scene in tqdm(eval_scenes, desc='MM Evaluation', ncols=80):
logging.debug(f"{scene}, {scene.timesteps=}, {len(scene.nodes)}")
timesteps = scene.sample_timesteps(scene.timesteps)
predictions = eval_trajectron.predict(scene,
timesteps,
ph,
num_samples=1,
min_future_timesteps=ph,
z_mode=True,
gmm_mode=True,
full_dist=False)
eval_batch_errors_ml.append(evaluation.compute_batch_statistics(predictions,
scene.dt,
max_hl=max_hl,
ph=ph,
map=scene.map,
node_type_enum=eval_env.NodeType,
kde=False))
evaluation.log_batch_errors(eval_batch_errors_ml,
log_writer,
'eval/ml',
epoch)
if args.save_every is not None and args.debug is False and epoch % args.save_every == 0:
model_registrar.save_models(epoch)
if __name__ == '__main__':
main()