445 lines
23 KiB
Python
445 lines
23 KiB
Python
import torch
|
|
from torch import nn, optim, utils
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
import dill
|
|
import json
|
|
import random
|
|
import pathlib
|
|
import warnings
|
|
from tqdm import tqdm
|
|
import trajectron.visualization as visualization
|
|
import trajectron.evaluation as evaluation
|
|
import matplotlib.pyplot as plt
|
|
from trajectron.argument_parser import args
|
|
from trajectron.model.trajectron import Trajectron
|
|
from trajectron.model.model_registrar import ModelRegistrar
|
|
from trajectron.model.model_utils import cyclical_lr
|
|
from trajectron.model.dataset import EnvironmentDataset, collate
|
|
from tensorboardX import SummaryWriter
|
|
# torch.autograd.set_detect_anomaly(True)
|
|
|
|
if not torch.cuda.is_available() or args.device == 'cpu':
|
|
args.device = torch.device('cpu')
|
|
else:
|
|
if torch.cuda.device_count() == 1:
|
|
# If you have CUDA_VISIBLE_DEVICES set, which you should,
|
|
# then this will prevent leftover flag arguments from
|
|
# messing with the device allocation.
|
|
args.device = 'cuda:0'
|
|
|
|
args.device = torch.device(args.device)
|
|
|
|
if args.eval_device is None:
|
|
args.eval_device = torch.device('cpu')
|
|
|
|
# This is needed for memory pinning using a DataLoader (otherwise memory is pinned to cuda:0 by default)
|
|
torch.cuda.set_device(args.device)
|
|
|
|
if args.seed is not None:
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
|
|
def main():
|
|
# Load hyperparameters from json
|
|
if not os.path.exists(args.conf):
|
|
print('Config json not found!')
|
|
with open(args.conf, 'r', encoding='utf-8') as conf_json:
|
|
hyperparams = json.load(conf_json)
|
|
|
|
# Add hyperparams from arguments
|
|
hyperparams['dynamic_edges'] = args.dynamic_edges
|
|
hyperparams['edge_state_combine_method'] = args.edge_state_combine_method
|
|
hyperparams['edge_influence_combine_method'] = args.edge_influence_combine_method
|
|
hyperparams['edge_addition_filter'] = args.edge_addition_filter
|
|
hyperparams['edge_removal_filter'] = args.edge_removal_filter
|
|
hyperparams['batch_size'] = args.batch_size
|
|
hyperparams['k_eval'] = args.k_eval
|
|
hyperparams['offline_scene_graph'] = args.offline_scene_graph
|
|
hyperparams['incl_robot_node'] = args.incl_robot_node
|
|
hyperparams['node_freq_mult_train'] = args.node_freq_mult_train
|
|
hyperparams['node_freq_mult_eval'] = args.node_freq_mult_eval
|
|
hyperparams['scene_freq_mult_train'] = args.scene_freq_mult_train
|
|
hyperparams['scene_freq_mult_eval'] = args.scene_freq_mult_eval
|
|
hyperparams['scene_freq_mult_viz'] = args.scene_freq_mult_viz
|
|
hyperparams['edge_encoding'] = not args.no_edge_encoding
|
|
hyperparams['use_map_encoding'] = args.map_encoding
|
|
hyperparams['augment'] = args.augment
|
|
hyperparams['override_attention_radius'] = args.override_attention_radius
|
|
|
|
print('-----------------------')
|
|
print('| TRAINING PARAMETERS |')
|
|
print('-----------------------')
|
|
print('| batch_size: %d' % args.batch_size)
|
|
print('| device: %s' % args.device)
|
|
print('| eval_device: %s' % args.eval_device)
|
|
print('| Offline Scene Graph Calculation: %s' % args.offline_scene_graph)
|
|
print('| EE state_combine_method: %s' % args.edge_state_combine_method)
|
|
print('| EIE scheme: %s' % args.edge_influence_combine_method)
|
|
print('| dynamic_edges: %s' % args.dynamic_edges)
|
|
print('| robot node: %s' % args.incl_robot_node)
|
|
print('| edge_addition_filter: %s' % args.edge_addition_filter)
|
|
print('| edge_removal_filter: %s' % args.edge_removal_filter)
|
|
print('| MHL: %s' % hyperparams['minimum_history_length'])
|
|
print('| PH: %s' % hyperparams['prediction_horizon'])
|
|
print('-----------------------')
|
|
|
|
# TODO)) gets rid of torch/distributions/distribution.py:44: UserWarning: <class 'trajectron.model.components.gmm2d.GMM2D'> does not define `arg_constraints`. Please set `arg_constraints = {}` or initialize the distribution with `validate_args=False` to turn off validation.
|
|
warnings.filterwarnings("ignore")
|
|
|
|
log_writer = None
|
|
model_dir = None
|
|
if not args.debug:
|
|
# Create the log and model directiory if they're not present.
|
|
model_dir = os.path.join(args.log_dir,
|
|
'models_' + time.strftime('%Y%m%d_%H_%M_%S', time.localtime()) + args.log_tag)
|
|
pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Save config to model directory
|
|
with open(os.path.join(model_dir, 'config.json'), 'w') as conf_json:
|
|
json.dump(hyperparams, conf_json)
|
|
|
|
log_writer = SummaryWriter(log_dir=model_dir)
|
|
|
|
# Load training and evaluation environments and scenes
|
|
train_scenes = []
|
|
train_data_path = os.path.join(args.data_dir, args.train_data_dict)
|
|
with open(train_data_path, 'rb') as f:
|
|
train_env = dill.load(f, encoding='latin1')
|
|
|
|
for attention_radius_override in args.override_attention_radius:
|
|
node_type1, node_type2, attention_radius = attention_radius_override.split(' ')
|
|
train_env.attention_radius[(node_type1, node_type2)] = float(attention_radius)
|
|
|
|
if train_env.robot_type is None and hyperparams['incl_robot_node']:
|
|
train_env.robot_type = train_env.NodeType[0] # TODO: Make more general, allow the user to specify?
|
|
for scene in train_env.scenes:
|
|
scene.add_robot_from_nodes(train_env.robot_type)
|
|
|
|
train_scenes = train_env.scenes
|
|
train_scenes_sample_probs = train_env.scenes_freq_mult_prop if args.scene_freq_mult_train else None
|
|
|
|
train_dataset = EnvironmentDataset(train_env,
|
|
hyperparams['state'],
|
|
hyperparams['pred_state'],
|
|
scene_freq_mult=hyperparams['scene_freq_mult_train'],
|
|
node_freq_mult=hyperparams['node_freq_mult_train'],
|
|
hyperparams=hyperparams,
|
|
min_history_timesteps=hyperparams['minimum_history_length'],
|
|
min_future_timesteps=hyperparams['prediction_horizon'],
|
|
return_robot=not args.incl_robot_node)
|
|
train_data_loader = dict()
|
|
print(train_scenes)
|
|
for node_type_data_set in train_dataset:
|
|
if len(node_type_data_set) == 0:
|
|
continue
|
|
|
|
node_type_dataloader = utils.data.DataLoader(node_type_data_set,
|
|
collate_fn=collate,
|
|
pin_memory=False if args.device == 'cpu' else True,
|
|
batch_size=args.batch_size,
|
|
shuffle=True,
|
|
num_workers=args.preprocess_workers)
|
|
train_data_loader[node_type_data_set.node_type] = node_type_dataloader
|
|
|
|
print(f"Loaded training data from {train_data_path}")
|
|
|
|
eval_scenes = []
|
|
eval_scenes_sample_probs = None
|
|
if args.eval_every is not None:
|
|
eval_data_path = os.path.join(args.data_dir, args.eval_data_dict)
|
|
with open(eval_data_path, 'rb') as f:
|
|
eval_env = dill.load(f, encoding='latin1')
|
|
|
|
for attention_radius_override in args.override_attention_radius:
|
|
node_type1, node_type2, attention_radius = attention_radius_override.split(' ')
|
|
eval_env.attention_radius[(node_type1, node_type2)] = float(attention_radius)
|
|
|
|
if eval_env.robot_type is None and hyperparams['incl_robot_node']:
|
|
eval_env.robot_type = eval_env.NodeType[0] # TODO: Make more general, allow the user to specify?
|
|
for scene in eval_env.scenes:
|
|
scene.add_robot_from_nodes(eval_env.robot_type)
|
|
|
|
eval_scenes = eval_env.scenes
|
|
eval_scenes_sample_probs = eval_env.scenes_freq_mult_prop if args.scene_freq_mult_eval else None
|
|
|
|
eval_dataset = EnvironmentDataset(eval_env,
|
|
hyperparams['state'],
|
|
hyperparams['pred_state'],
|
|
scene_freq_mult=hyperparams['scene_freq_mult_eval'],
|
|
node_freq_mult=hyperparams['node_freq_mult_eval'],
|
|
hyperparams=hyperparams,
|
|
min_history_timesteps=hyperparams['minimum_history_length'],
|
|
min_future_timesteps=hyperparams['prediction_horizon'],
|
|
return_robot=not args.incl_robot_node)
|
|
eval_data_loader = dict()
|
|
for node_type_data_set in eval_dataset:
|
|
if len(node_type_data_set) == 0:
|
|
continue
|
|
|
|
node_type_dataloader = utils.data.DataLoader(node_type_data_set,
|
|
collate_fn=collate,
|
|
pin_memory=False if args.eval_device == 'cpu' else True,
|
|
batch_size=args.eval_batch_size,
|
|
shuffle=True,
|
|
num_workers=args.preprocess_workers)
|
|
eval_data_loader[node_type_data_set.node_type] = node_type_dataloader
|
|
|
|
print(f"Loaded evaluation data from {eval_data_path}")
|
|
|
|
# Offline Calculate Scene Graph
|
|
if hyperparams['offline_scene_graph'] == 'yes':
|
|
print(f"Offline calculating scene graphs")
|
|
for i, scene in enumerate(train_scenes):
|
|
scene.calculate_scene_graph(train_env.attention_radius,
|
|
hyperparams['edge_addition_filter'],
|
|
hyperparams['edge_removal_filter'])
|
|
print(f"Created Scene Graph for Training Scene {i}")
|
|
|
|
for i, scene in enumerate(eval_scenes):
|
|
scene.calculate_scene_graph(eval_env.attention_radius,
|
|
hyperparams['edge_addition_filter'],
|
|
hyperparams['edge_removal_filter'])
|
|
print(f"Created Scene Graph for Evaluation Scene {i}")
|
|
|
|
model_registrar = ModelRegistrar(model_dir, args.device)
|
|
|
|
trajectron = Trajectron(model_registrar,
|
|
hyperparams,
|
|
log_writer,
|
|
args.device)
|
|
|
|
trajectron.set_environment(train_env)
|
|
trajectron.set_annealing_params()
|
|
print('Created Training Model.')
|
|
|
|
eval_trajectron = None
|
|
if args.eval_every is not None or args.vis_every is not None:
|
|
eval_trajectron = Trajectron(model_registrar,
|
|
hyperparams,
|
|
log_writer,
|
|
args.eval_device)
|
|
eval_trajectron.set_environment(eval_env)
|
|
eval_trajectron.set_annealing_params()
|
|
print('Created Evaluation Model.')
|
|
|
|
optimizer = dict()
|
|
lr_scheduler = dict()
|
|
for node_type in train_env.NodeType:
|
|
if node_type not in hyperparams['pred_state']:
|
|
continue
|
|
optimizer[node_type] = optim.Adam([{'params': model_registrar.get_all_but_name_match('map_encoder').parameters()},
|
|
{'params': model_registrar.get_name_match('map_encoder').parameters(), 'lr':0.0008}], lr=hyperparams['learning_rate'])
|
|
# Set Learning Rate
|
|
if hyperparams['learning_rate_style'] == 'const':
|
|
lr_scheduler[node_type] = optim.lr_scheduler.ExponentialLR(optimizer[node_type], gamma=1.0)
|
|
elif hyperparams['learning_rate_style'] == 'exp':
|
|
lr_scheduler[node_type] = optim.lr_scheduler.ExponentialLR(optimizer[node_type],
|
|
gamma=hyperparams['learning_decay_rate'])
|
|
|
|
#################################
|
|
# TRAINING #
|
|
#################################
|
|
curr_iter_node_type = {node_type: 0 for node_type in train_data_loader.keys()}
|
|
for epoch in range(1, args.train_epochs + 1):
|
|
model_registrar.to(args.device)
|
|
train_dataset.augment = args.augment
|
|
# print('train', curr_iter_node_type)
|
|
for node_type, data_loader in train_data_loader.items():
|
|
curr_iter = curr_iter_node_type[node_type]
|
|
pbar = tqdm(data_loader, ncols=80)
|
|
for batch in pbar:
|
|
trajectron.set_curr_iter(curr_iter)
|
|
trajectron.step_annealers(node_type)
|
|
optimizer[node_type].zero_grad()
|
|
train_loss = trajectron.train_loss(batch, node_type)
|
|
pbar.set_description(f"Epoch {epoch}, {node_type} L: {train_loss.item():.2f}")
|
|
train_loss.backward()
|
|
# Clipping gradients.
|
|
if hyperparams['grad_clip'] is not None:
|
|
nn.utils.clip_grad_value_(model_registrar.parameters(), hyperparams['grad_clip'])
|
|
optimizer[node_type].step()
|
|
|
|
# Stepping forward the learning rate scheduler and annealers.
|
|
lr_scheduler[node_type].step()
|
|
|
|
if not args.debug:
|
|
log_writer.add_scalar(f"{node_type}/train/learning_rate",
|
|
lr_scheduler[node_type].get_lr()[0],
|
|
curr_iter)
|
|
log_writer.add_scalar(f"{node_type}/train/loss", train_loss, curr_iter)
|
|
|
|
curr_iter += 1
|
|
curr_iter_node_type[node_type] = curr_iter
|
|
train_dataset.augment = False
|
|
if args.eval_every is not None or args.vis_every is not None:
|
|
eval_trajectron.set_curr_iter(epoch)
|
|
|
|
#################################
|
|
# VISUALIZATION #
|
|
#################################
|
|
if args.vis_every is not None and not args.debug and epoch % args.vis_every == 0 and epoch > 0:
|
|
max_hl = hyperparams['maximum_history_length']
|
|
ph = hyperparams['prediction_horizon']
|
|
with torch.no_grad():
|
|
# Predict random timestep to plot for train data set
|
|
if args.scene_freq_mult_viz:
|
|
scene = np.random.choice(train_scenes, p=train_scenes_sample_probs)
|
|
else:
|
|
scene = np.random.choice(train_scenes)
|
|
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
|
|
predictions = trajectron.predict(scene,
|
|
timestep,
|
|
ph,
|
|
min_future_timesteps=ph,
|
|
z_mode=True,
|
|
gmm_mode=True,
|
|
all_z_sep=False,
|
|
full_dist=False)
|
|
|
|
# Plot predicted timestep for random scene
|
|
fig, ax = plt.subplots(figsize=(10, 10))
|
|
visualization.visualize_prediction(ax,
|
|
predictions,
|
|
scene.dt,
|
|
max_hl=max_hl,
|
|
ph=ph,
|
|
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
|
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
|
log_writer.add_figure('train/prediction', fig, epoch)
|
|
|
|
model_registrar.to(args.eval_device)
|
|
# Predict random timestep to plot for eval data set
|
|
if args.scene_freq_mult_viz:
|
|
scene = np.random.choice(eval_scenes, p=eval_scenes_sample_probs)
|
|
else:
|
|
scene = np.random.choice(eval_scenes)
|
|
timestep = scene.sample_timesteps(1, min_future_timesteps=ph)
|
|
predictions = eval_trajectron.predict(scene,
|
|
timestep,
|
|
ph,
|
|
num_samples=20,
|
|
min_future_timesteps=ph,
|
|
z_mode=False,
|
|
full_dist=False)
|
|
|
|
# Plot predicted timestep for random scene
|
|
fig, ax = plt.subplots(figsize=(10, 10))
|
|
visualization.visualize_prediction(ax,
|
|
predictions,
|
|
scene.dt,
|
|
max_hl=max_hl,
|
|
ph=ph,
|
|
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
|
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
|
log_writer.add_figure('eval/prediction', fig, epoch)
|
|
|
|
# Predict random timestep to plot for eval data set
|
|
predictions = eval_trajectron.predict(scene,
|
|
timestep,
|
|
ph,
|
|
min_future_timesteps=ph,
|
|
z_mode=True,
|
|
gmm_mode=True,
|
|
all_z_sep=True,
|
|
full_dist=False)
|
|
|
|
# Plot predicted timestep for random scene
|
|
fig, ax = plt.subplots(figsize=(10, 10))
|
|
visualization.visualize_prediction(ax,
|
|
predictions,
|
|
scene.dt,
|
|
max_hl=max_hl,
|
|
ph=ph,
|
|
map=scene.map['VISUALIZATION'] if scene.map is not None else None)
|
|
ax.set_title(f"{scene.name}-t: {timestep}")
|
|
log_writer.add_figure('eval/prediction_all_z', fig, epoch)
|
|
|
|
#################################
|
|
# EVALUATION #
|
|
#################################
|
|
if args.eval_every is not None and not args.debug and epoch % args.eval_every == 0 and epoch > 0:
|
|
max_hl = hyperparams['maximum_history_length']
|
|
ph = hyperparams['prediction_horizon']
|
|
model_registrar.to(args.eval_device)
|
|
with torch.no_grad():
|
|
# Calculate evaluation loss
|
|
for node_type, data_loader in eval_data_loader.items():
|
|
eval_loss = []
|
|
print(f"Starting Evaluation @ epoch {epoch} for node type: {node_type}")
|
|
pbar = tqdm(data_loader, ncols=80)
|
|
for batch in pbar:
|
|
eval_loss_node_type = eval_trajectron.eval_loss(batch, node_type)
|
|
pbar.set_description(f"Epoch {epoch}, {node_type} L: {eval_loss_node_type.item():.2f}")
|
|
eval_loss.append({node_type: {'nll': [eval_loss_node_type]}})
|
|
del batch
|
|
|
|
evaluation.log_batch_errors(eval_loss,
|
|
log_writer,
|
|
f"{node_type}/eval_loss",
|
|
epoch)
|
|
|
|
# Predict batch timesteps for evaluation dataset evaluation
|
|
eval_batch_errors = []
|
|
for scene in tqdm(eval_scenes, desc='Sample Evaluation', ncols=80):
|
|
timesteps = scene.sample_timesteps(args.eval_batch_size)
|
|
|
|
predictions = eval_trajectron.predict(scene,
|
|
timesteps,
|
|
ph,
|
|
num_samples=50,
|
|
min_future_timesteps=ph,
|
|
full_dist=False)
|
|
|
|
eval_batch_errors.append(evaluation.compute_batch_statistics(predictions,
|
|
scene.dt,
|
|
max_hl=max_hl,
|
|
ph=ph,
|
|
node_type_enum=eval_env.NodeType,
|
|
map=scene.map))
|
|
|
|
evaluation.log_batch_errors(eval_batch_errors,
|
|
log_writer,
|
|
'eval',
|
|
epoch,
|
|
bar_plot=['kde'],
|
|
box_plot=['ade', 'fde'])
|
|
|
|
# Predict maximum likelihood batch timesteps for evaluation dataset evaluation
|
|
eval_batch_errors_ml = []
|
|
for scene in tqdm(eval_scenes, desc='MM Evaluation', ncols=80):
|
|
timesteps = scene.sample_timesteps(scene.timesteps)
|
|
|
|
predictions = eval_trajectron.predict(scene,
|
|
timesteps,
|
|
ph,
|
|
num_samples=1,
|
|
min_future_timesteps=ph,
|
|
z_mode=True,
|
|
gmm_mode=True,
|
|
full_dist=False)
|
|
|
|
eval_batch_errors_ml.append(evaluation.compute_batch_statistics(predictions,
|
|
scene.dt,
|
|
max_hl=max_hl,
|
|
ph=ph,
|
|
map=scene.map,
|
|
node_type_enum=eval_env.NodeType,
|
|
kde=False))
|
|
|
|
evaluation.log_batch_errors(eval_batch_errors_ml,
|
|
log_writer,
|
|
'eval/ml',
|
|
epoch)
|
|
|
|
if args.save_every is not None and args.debug is False and epoch % args.save_every == 0:
|
|
model_registrar.save_models(epoch)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|