import torch import torch.distributions as td import numpy as np from trajectron.model.model_utils import ModeKeys class DiscreteLatent(object): def __init__(self, hyperparams, device): self.hyperparams = hyperparams self.z_dim = hyperparams['N'] * hyperparams['K'] self.N = hyperparams['N'] self.K = hyperparams['K'] self.kl_min = hyperparams['kl_min'] self.device = device self.temp = None # filled in by MultimodalGenerativeCVAE.set_annealing_params self.z_logit_clip = None # filled in by MultimodalGenerativeCVAE.set_annealing_params self.p_dist = None # filled in by MultimodalGenerativeCVAE.encoder self.q_dist = None # filled in by MultimodalGenerativeCVAE.encoder def dist_from_h(self, h, mode): logits_separated = torch.reshape(h, (-1, self.N, self.K)) logits_separated_mean_zero = logits_separated - torch.mean(logits_separated, dim=-1, keepdim=True) if self.z_logit_clip is not None and mode == ModeKeys.TRAIN: c = self.z_logit_clip logits = torch.clamp(logits_separated_mean_zero, min=-c, max=c) else: logits = logits_separated_mean_zero return td.OneHotCategorical(logits=logits) def sample_q(self, num_samples, mode): bs = self.p_dist.probs.size()[0] num_components = self.N * self.K z_NK = torch.from_numpy(self.all_one_hot_combinations(self.N, self.K)).float().to(self.device).repeat(num_samples, bs) return torch.reshape(z_NK, (num_samples * num_components, -1, self.z_dim)) def sample_p(self, num_samples, mode, most_likely_z=False, full_dist=True, all_z_sep=False): num_components = 1 if full_dist: bs = self.p_dist.probs.size()[0] z_NK = torch.from_numpy(self.all_one_hot_combinations(self.N, self.K)).float().to(self.device).repeat(num_samples, bs) num_components = self.K ** self.N k = num_samples * num_components elif all_z_sep: bs = self.p_dist.probs.size()[0] z_NK = torch.from_numpy(self.all_one_hot_combinations(self.N, self.K)).float().to(self.device).repeat(1, bs) k = self.K ** self.N num_samples = k elif most_likely_z: # Sampling the most likely z from p(z|x). eye_mat = torch.eye(self.p_dist.event_shape[-1], device=self.device) argmax_idxs = torch.argmax(self.p_dist.probs, dim=2) z_NK = torch.unsqueeze(eye_mat[argmax_idxs], dim=0).expand(num_samples, -1, -1, -1) k = num_samples else: z_NK = self.p_dist.sample((num_samples,)) k = num_samples if mode == ModeKeys.PREDICT: return torch.reshape(z_NK, (k, -1, self.N * self.K)), num_samples, num_components else: return torch.reshape(z_NK, (k, -1, self.N * self.K)) def kl_q_p(self, log_writer=None, prefix=None, curr_iter=None): kl_separated = td.kl_divergence(self.q_dist, self.p_dist) if len(kl_separated.size()) < 2: kl_separated = torch.unsqueeze(kl_separated, dim=0) kl_minibatch = torch.mean(kl_separated, dim=0, keepdim=True) if log_writer is not None: log_writer.add_scalar(prefix + '/true_kl', torch.sum(kl_minibatch), curr_iter) if self.kl_min > 0: kl_lower_bounded = torch.clamp(kl_minibatch, min=self.kl_min) kl = torch.sum(kl_lower_bounded) else: kl = torch.sum(kl_minibatch) return kl def q_log_prob(self, z): k = z.size()[0] z_NK = torch.reshape(z, [k, -1, self.N, self.K]) return torch.sum(self.q_dist.log_prob(z_NK), dim=2) def p_log_prob(self, z): k = z.size()[0] z_NK = torch.reshape(z, [k, -1, self.N, self.K]) return torch.sum(self.p_dist.log_prob(z_NK), dim=2) def get_p_dist_probs(self): return self.p_dist.probs @staticmethod def all_one_hot_combinations(N, K): return np.eye(K).take(np.reshape(np.indices([K] * N), [N, -1]).T, axis=0).reshape(-1, N * K) # [K**N, N*K] def summarize_for_tensorboard(self, log_writer, prefix, curr_iter): log_writer.add_histogram(prefix + "/latent/p_z_x", self.p_dist.probs, curr_iter) log_writer.add_histogram(prefix + "/latent/q_z_xy", self.q_dist.probs, curr_iter) log_writer.add_histogram(prefix + "/latent/p_z_x_logits", self.p_dist.logits, curr_iter) log_writer.add_histogram(prefix + "/latent/q_z_xy_logits", self.q_dist.logits, curr_iter) if self.z_dim <= 9: for i in range(self.N): for j in range(self.K): log_writer.add_histogram(prefix + "/latent/q_z_xy_logit{0}{1}".format(i, j), self.q_dist.logits[:, i, j], curr_iter)