import random import numpy as np import pandas as pd from environment import DoubleHeaderNumpyArray from ncls import NCLS class Node(object): def __init__(self, node_type, node_id, data, length=None, width=None, height=None, first_timestep=0, is_robot=False, description="", frequency_multiplier=1, non_aug_node=None): self.type = node_type self.id = node_id self.length = length self.width = width self.height = height self.first_timestep = first_timestep self.non_aug_node = non_aug_node if data is not None: if isinstance(data, pd.DataFrame): self.data = DoubleHeaderNumpyArray(data.values, list(data.columns)) elif isinstance(data, DoubleHeaderNumpyArray): self.data = data else: self.data = None self.is_robot = is_robot self._last_timestep = None self.description = description self.frequency_multiplier = frequency_multiplier self.forward_in_time_on_next_override = False def __eq__(self, other): return ((isinstance(other, self.__class__) or isinstance(self, other.__class__)) and self.id == other.id and self.type == other.type) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self.type, self.id)) def __repr__(self): return '/'.join([self.type.name, self.id]) def overwrite_data(self, data, header, forward_in_time_on_next_overwrite=False): """ This function hard overwrites the data matrix. When using it you have to make sure that the columns in the new data matrix correspond to the old structure. As well as setting first_timestep. :param data: New data matrix :param forward_in_time_on_next_overwrite: On the !!NEXT!! call of overwrite_data first_timestep will be increased. :return: None """ if header is None: self.data.data = data else: self.data = DoubleHeaderNumpyArray(data, header) self._last_timestep = None if self.forward_in_time_on_next_override: self.first_timestep += 1 self.forward_in_time_on_next_override = forward_in_time_on_next_overwrite def scene_ts_to_node_ts(self, scene_ts) -> (np.ndarray, int, int): """ Transforms timestamp from scene into timeframe of node data. :param scene_ts: Scene timesteps :return: ts: Transformed timesteps, paddingl: Number of timesteps in scene range which are not available in node data before data is available. paddingu: Number of timesteps in scene range which are not available in node data after data is available. """ paddingl = (self.first_timestep - scene_ts[0]).clip(0) paddingu = (scene_ts[1] - self.last_timestep).clip(0) ts = np.array(scene_ts).clip(min=self.first_timestep, max=self.last_timestep) - self.first_timestep return ts, paddingl, paddingu def history_points_at(self, ts) -> int: """ Number of history points in trajectory. Timestep is exclusive. :param ts: Scene timestep where the number of history points are queried. :return: Number of history timesteps. """ return ts - self.first_timestep def get(self, tr_scene, state, padding=np.nan) -> np.ndarray: """ Returns a time range of multiple properties of the node. :param tr_scene: The timestep range (inklusive). :param state: The state description for which the properties are returned. :param padding: The value which should be used for padding if not enough information is available. :return: Array of node property values. """ if tr_scene.size == 1: tr_scene = np.array([tr_scene[0], tr_scene[0]]) length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive tr, paddingl, paddingu = self.scene_ts_to_node_ts(tr_scene) data_array = self.data[tr[0]:tr[1] + 1, state] padded_data_array = np.full((length, data_array.shape[1]), fill_value=padding) padded_data_array[paddingl:length - paddingu] = data_array return padded_data_array @property def timesteps(self) -> int: """ Number of available timesteps for node. :return: Number of available timesteps. """ return self.data.shape[0] @property def last_timestep(self) -> int: """ Nodes last timestep in the Scene. :return: Nodes last timestep. """ if self._last_timestep is None: self._last_timestep = self.first_timestep + self.timesteps - 1 return self._last_timestep class MultiNode(Node): def __init__(self, node_type, node_id, nodes_list, is_robot=False): super(MultiNode, self).__init__(node_type, node_id, data=None, is_robot=is_robot) self.nodes_list = nodes_list for node in self.nodes_list: node.is_robot = is_robot self.first_timestep = min(node.first_timestep for node in self.nodes_list) self._last_timestep = max(node.last_timestep for node in self.nodes_list) starts = np.array([node.first_timestep for node in self.nodes_list], dtype=np.int64) ends = np.array([node.last_timestep for node in self.nodes_list], dtype=np.int64) ids = np.arange(len(self.nodes_list), dtype=np.int64) self.interval_tree = NCLS(starts, ends, ids) @staticmethod def find_non_overlapping_nodes(nodes_list, min_timesteps=1) -> list: """ Greedily finds a set of non-overlapping nodes in the provided scene. :return: A list of non-overlapping nodes. """ non_overlapping_nodes = list() nodes = sorted(nodes_list, key=lambda n: n.last_timestep) current_time = 0 for node in nodes: if node.first_timestep >= current_time and node.timesteps >= min_timesteps: # Include the node non_overlapping_nodes.append(node) current_time = node.last_timestep return non_overlapping_nodes def get_node_at_timesteps(self, scene_ts) -> Node: possible_node_ranges = list(self.interval_tree.find_overlap(scene_ts[0], scene_ts[1] + 1)) if not possible_node_ranges: return Node(node_type=self.type, node_id='EMPTY', data=self.nodes_list[0].data * np.nan, is_robot=self.is_robot) node_idx = random.choice(possible_node_ranges)[2] return self.nodes_list[node_idx] def scene_ts_to_node_ts(self, scene_ts) -> (Node, np.ndarray, int, int): """ Transforms timestamp from scene into timeframe of node data. :param scene_ts: Scene timesteps :return: ts: Transformed timesteps, paddingl: Number of timesteps in scene range which are not available in node data before data is available. paddingu: Number of timesteps in scene range which are not available in node data after data is available. """ possible_node_ranges = list(self.interval_tree.find_overlap(scene_ts[0], scene_ts[1] + 1)) if not possible_node_ranges: return None, None, None, None node_idx = random.choice(possible_node_ranges)[2] node = self.nodes_list[node_idx] paddingl = (node.first_timestep - scene_ts[0]).clip(0) paddingu = (scene_ts[1] - node.last_timestep).clip(0) ts = np.array(scene_ts).clip(min=node.first_timestep, max=node.last_timestep) - node.first_timestep return node, ts, paddingl, paddingu def get(self, tr_scene, state, padding=np.nan) -> np.ndarray: if tr_scene.size == 1: tr_scene = np.array([tr_scene, tr_scene]) length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive node, tr, paddingl, paddingu = self.scene_ts_to_node_ts(tr_scene) if node is None: state_length = sum([len(entity_dims) for entity_dims in state.values()]) return np.full((length, state_length), fill_value=padding) data_array = node.data[tr[0]:tr[1] + 1, state] padded_data_array = np.full((length, data_array.shape[1]), fill_value=padding) padded_data_array[paddingl:length - paddingu] = data_array return padded_data_array def get_all(self, tr_scene, state, padding=np.nan) -> np.ndarray: # Assumption here is that the user is asking for all of the data in this MultiNode and to return it within a # full scene-sized output array. assert tr_scene.size == 2 and tr_scene[0] == 0 and self.last_timestep <= tr_scene[1] length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive state_length = sum([len(entity_dims) for entity_dims in state.values()]) padded_data_array = np.full((length, state_length), fill_value=padding) for node in self.nodes_list: padded_data_array[node.first_timestep:node.last_timestep + 1] = node.data[:, state] return padded_data_array def history_points_at(self, ts) -> int: """ Number of history points in trajectory. Timestep is exclusive. :param ts: Scene timestep where the number of history points are queried. :return: Number of history timesteps. """ node_idx = next(self.interval_tree.find_overlap(ts, ts + 1))[2] node = self.nodes_list[node_idx] return ts - node.first_timestep @property def timesteps(self) -> int: """ Number of available timesteps for node. :return: Number of available timesteps. """ return self._last_timestep - self.first_timestep + 1