{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import glob\n", "import matplotlib.pyplot as plt\n", "import matplotlib.ticker as ticker" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Vehicles" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FDE Results for: int_ee\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.15211091398370916\n", "RB Viols @1.0s: 0.0024947383125349227\n", "FDE @1.0s: 0.06731242196606527\n", "KDE @1.0s: -4.282745726122304\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.6665500898672814\n", "RB Viols @2.0s: 0.006711305643509033\n", "FDE @2.0s: 0.4448624482250238\n", "KDE @2.0s: -2.817182897766484\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.6002716865301074\n", "RB Viols @3.0s: 0.03183521139877072\n", "FDE @3.0s: 1.1269273173570473\n", "KDE @3.0s: -1.672070802164807\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 2.9889876939803504\n", "RB Viols @4.0s: 0.08143642515676414\n", "FDE @4.0s: 2.1726876209006143\n", "KDE @4.0s: -0.7623941477599536\n", "----------------------------------------------\n", "\n", "FDE Results for: int_ee_me\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.17146557916606217\n", "RB Viols @1.0s: 0.002893866020984665\n", "FDE @1.0s: 0.06825468723974978\n", "KDE @1.0s: -4.174627329473856\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.6874934647937203\n", "RB Viols @2.0s: 0.006347814614763767\n", "FDE @2.0s: 0.4473287549407142\n", "KDE @2.0s: -2.7424043655184898\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.6150508554078604\n", "RB Viols @3.0s: 0.027944558266592166\n", "FDE @3.0s: 1.1370181075818808\n", "KDE @3.0s: -1.616241617749356\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 2.9834139311814645\n", "RB Viols @4.0s: 0.07611557086980816\n", "FDE @4.0s: 2.2067347028461923\n", "KDE @4.0s: -0.7050671606779637\n", "----------------------------------------------\n", "\n", "FDE Results for: vel_ee_me\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.21398885662219846\n", "RB Viols @1.0s: 0.0024283075681380767\n", "FDE @1.0s: 0.1792272294232774\n", "KDE @1.0s: 0.8111385940397233\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.715463329547642\n", "RB Viols @2.0s: 0.006407897187558204\n", "FDE @2.0s: 0.5706283482566946\n", "KDE @2.0s: 0.051893685490453464\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.5440473025828012\n", "RB Viols @3.0s: 0.02805111131806047\n", "FDE @3.0s: 1.2515989489585615\n", "KDE @3.0s: 0.371638561867866\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 2.714255228812044\n", "RB Viols @4.0s: 0.06920216365555348\n", "FDE @4.0s: 2.2400267464847876\n", "KDE @4.0s: 0.8726346089263975\n", "----------------------------------------------\n", "\n", "FDE Results for: robot\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.1295215269389519\n", "RB Viols @1.0s: 0.0026757717999638924\n", "FDE @1.0s: 0.07820393052295552\n", "KDE @1.0s: -3.906838146881899\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.45962341869964574\n", "RB Viols @2.0s: 0.0053363964614551365\n", "FDE @2.0s: 0.3403511030418785\n", "KDE @2.0s: -2.7593676749477294\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.02267032097404\n", "RB Viols @3.0s: 0.016484509839321176\n", "FDE @3.0s: 0.805915047871091\n", "KDE @3.0s: -1.7502450775203158\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 1.8380306576706953\n", "RB Viols @4.0s: 0.042144791478606246\n", "FDE @4.0s: 1.4979755853506684\n", "KDE @4.0s: -0.9291549495198915\n", "----------------------------------------------\n", "\n" ] } ], "source": [ "for model in ['int_ee', 'int_ee_me', 'vel_ee', 'robot']:\n", " print(f\"FDE Results for: {model}\")\n", " for ph in [2, 4, 6, 8]:\n", " print(f\"-----------------PH: {ph} -------------------\")\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}_{ph}_fde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " \n", " print(f\"FDE Mean @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].mean()}\")\n", " del perf_df \n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}_{ph}_rv_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"RB Viols @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].sum() / (len(perf_df['value'][perf_df['type'] == 'full'].index)*2000)}\")\n", " del perf_df\n", "\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_fde_most_likely_z.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"FDE @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'ml'].mean()}\") \n", " del perf_df\n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_kde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"KDE @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].mean()}\") \n", " print(\"----------------------------------------------\")\n", " del perf_df\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FDE Results for: int_ee_me_no_ego\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.16815279412540554\n", "RB Viols @1.0s: 0.002895014589929844\n", "FDE @1.0s: 0.06937045846177256\n", "KDE @1.0s: -4.262019931215572\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.6655379721067188\n", "RB Viols @2.0s: 0.006153364996585336\n", "FDE @2.0s: 0.4359008486971371\n", "KDE @2.0s: -2.856656149202157\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.546091556287448\n", "RB Viols @3.0s: 0.027780530204259017\n", "FDE @3.0s: 1.0896218245514429\n", "KDE @3.0s: -1.7563896369106704\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 2.8358865412257397\n", "RB Viols @4.0s: 0.07581256596510834\n", "FDE @4.0s: 2.0939721352439022\n", "KDE @4.0s: -0.8690706892091696\n", "----------------------------------------------\n", "\n", "FDE Results for: robot\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.1295215269389519\n", "RB Viols @1.0s: 0.0026757717999638924\n", "FDE @1.0s: 0.07820393052295552\n", "KDE @1.0s: -3.906838146881899\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.45962341869964574\n", "RB Viols @2.0s: 0.0053363964614551365\n", "FDE @2.0s: 0.3403511030418785\n", "KDE @2.0s: -2.7593676749477294\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 1.02267032097404\n", "RB Viols @3.0s: 0.016484509839321176\n", "FDE @3.0s: 0.805915047871091\n", "KDE @3.0s: -1.7502450775203158\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 1.8380306576706953\n", "RB Viols @4.0s: 0.042144791478606246\n", "FDE @4.0s: 1.4979755853506684\n", "KDE @4.0s: -0.9291549495198915\n", "----------------------------------------------\n", "\n" ] } ], "source": [ "for model in ['int_ee_me_no_ego', 'robot']:\n", " print(f\"FDE Results for: {model}\")\n", " for ph in [2, 4, 6, 8]:\n", " print(f\"-----------------PH: {ph} -------------------\")\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}_{ph}_fde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " \n", " print(f\"FDE Mean @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].mean()}\")\n", " del perf_df \n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}_{ph}_rv_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"RB Viols @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].sum() / (len(perf_df['value'][perf_df['type'] == 'full'].index)*2000)}\")\n", " del perf_df\n", "\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_fde_most_likely_z.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"FDE @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'ml'].mean()}\") \n", " del perf_df\n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_kde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"KDE @{ph*0.5}s: {perf_df['value'][perf_df['type'] == 'full'].mean()}\") \n", " print(\"----------------------------------------------\")\n", " del perf_df\n", " print(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Pedestrians" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FDE Results for: int_ee_me_ped\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.03182535279935429\n", "ADE Mean @1.0s: 0.034975306849922005\n", "KDE Mean @1.0s: -5.577685316351455\n", "FDE @1.0s: 0.014470668260911932\n", "ADE @1.0s: 0.021401672730783382\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.21879313416975887\n", "ADE Mean @2.0s: 0.10080166010252017\n", "KDE Mean @2.0s: -3.9582677566570568\n", "FDE @2.0s: 0.1656927524369561\n", "ADE @2.0s: 0.07265244240382243\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 0.48124106327369537\n", "ADE Mean @3.0s: 0.20455084715465008\n", "KDE Mean @3.0s: -2.768212012793919\n", "FDE @3.0s: 0.36991744855974507\n", "ADE @3.0s: 0.1538591151610063\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 0.7897925016736143\n", "ADE Mean @4.0s: 0.3309282373807616\n", "KDE Mean @4.0s: -1.891451489507079\n", "FDE @4.0s: 0.61780508431085\n", "ADE @4.0s: 0.2535511093237994\n", "----------------------------------------------\n", "\n", "FDE Results for: vel_ee_ped\n", "-----------------PH: 2 -------------------\n", "FDE Mean @1.0s: 0.05470159146400349\n", "ADE Mean @1.0s: 0.04723856023122099\n", "KDE Mean @1.0s: -2.693286369409014\n", "FDE @1.0s: 0.03272132837594798\n", "ADE @1.0s: 0.03440844320849249\n", "----------------------------------------------\n", "-----------------PH: 4 -------------------\n", "FDE Mean @2.0s: 0.235549582909888\n", "ADE Mean @2.0s: 0.11606559815399368\n", "KDE Mean @2.0s: -2.4601640447400186\n", "FDE @2.0s: 0.17398568920641183\n", "ADE @2.0s: 0.08409326559182477\n", "----------------------------------------------\n", "-----------------PH: 6 -------------------\n", "FDE Mean @3.0s: 0.4833427705400407\n", "ADE Mean @3.0s: 0.21676831990727596\n", "KDE Mean @3.0s: -1.7550238928047612\n", "FDE @3.0s: 0.3705610422470493\n", "ADE @3.0s: 0.16234687699669642\n", "----------------------------------------------\n", "-----------------PH: 8 -------------------\n", "FDE Mean @4.0s: 0.7761647665317681\n", "ADE Mean @4.0s: 0.3376368652760976\n", "KDE Mean @4.0s: -1.0900967343150951\n", "FDE @4.0s: 0.6033992852865975\n", "ADE @4.0s: 0.25754615271005243\n", "----------------------------------------------\n", "\n" ] } ], "source": [ "for model in ['int_ee_me_ped', 'vel_ee_ped']:\n", " print(f\"FDE Results for: {model}\")\n", " for ph in [2, 4, 6, 8]:\n", " print(f\"-----------------PH: {ph} -------------------\")\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_fde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"FDE Mean @{ph*0.5}s: {perf_df['value'][perf_df['metric'] == 'fde'].mean()}\")\n", " del perf_df \n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_ade_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"ADE Mean @{ph*0.5}s: {perf_df['value'][perf_df['metric'] == 'ade'].mean()}\")\n", " del perf_df\n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_kde_full.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"KDE Mean @{ph*0.5}s: {perf_df['value'][perf_df['metric'] == 'kde'].mean()}\")\n", " del perf_df \n", "\n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_fde_most_likely_z.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"FDE @{ph*0.5}s: {perf_df['value'][perf_df['metric'] == 'fde'].mean()}\") \n", " del perf_df\n", " \n", " perf_df = pd.DataFrame()\n", " for f in glob.glob(f\"results/{model}*_{ph}_ade_most_likely_z.csv\"):\n", " dataset_df = pd.read_csv(f)\n", " dataset_df['model'] = model\n", " perf_df = perf_df.append(dataset_df, ignore_index=True)\n", " del perf_df['Unnamed: 0']\n", " print(f\"ADE @{ph*0.5}s: {perf_df['value'][perf_df['metric'] == 'ade'].mean()}\") \n", " del perf_df\n", " print(\"----------------------------------------------\")\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:trajectron] *", "language": "python", "name": "conda-env-trajectron-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }