import numpy as np def prediction_output_to_trajectories(prediction_output_dict, dt, max_h, ph, map=None, prune_ph_to_future=False): prediction_timesteps = prediction_output_dict.keys() output_dict = dict() histories_dict = dict() futures_dict = dict() for t in prediction_timesteps: histories_dict[t] = dict() output_dict[t] = dict() futures_dict[t] = dict() prediction_nodes = prediction_output_dict[t].keys() for node in prediction_nodes: predictions_output = prediction_output_dict[t][node] position_state = {'position': ['x', 'y']} history = node.get(np.array([t - max_h, t]), position_state) # History includes current pos history = history[~np.isnan(history.sum(axis=1))] future = node.get(np.array([t + 1, t + ph]), position_state) future = future[~np.isnan(future.sum(axis=1))] if prune_ph_to_future: predictions_output = predictions_output[:, :, :future.shape[0]] if predictions_output.shape[2] == 0: continue trajectory = predictions_output if map is None: histories_dict[t][node] = history output_dict[t][node] = trajectory futures_dict[t][node] = future else: histories_dict[t][node] = map.to_map_points(history) output_dict[t][node] = map.to_map_points(trajectory) futures_dict[t][node] = map.to_map_points(future) return output_dict, histories_dict, futures_dict