import torch import torch.nn.utils.rnn as rnn from enum import Enum import functools import numpy as np import math class ModeKeys(Enum): TRAIN = 1 EVAL = 2 PREDICT = 3 def cyclical_lr(stepsize, min_lr=3e-4, max_lr=3e-3, decay=1.): # Lambda function to calculate the LR lr_lambda = lambda it: min_lr + (max_lr - min_lr) * relative(it, stepsize) * decay**it # Additional function to see where on the cycle we are def relative(it, stepsize): cycle = math.floor(1 + it / (2 * stepsize)) x = abs(it / stepsize - 2 * cycle + 1) return max(0, (1 - x)) return lr_lambda def to_one_hot(labels, n_labels): return torch.eye(n_labels, device=labels.device)[labels] def exp_anneal(anneal_kws): device = anneal_kws['device'] start = torch.tensor(anneal_kws['start'], device=device) finish = torch.tensor(anneal_kws['finish'], device=device) rate = torch.tensor(anneal_kws['rate'], device=device) return lambda step: finish - (finish - start)*torch.pow(rate, torch.tensor(step, dtype=torch.float, device=device)) def sigmoid_anneal(anneal_kws): device = anneal_kws['device'] start = torch.tensor(anneal_kws['start'], device=device) finish = torch.tensor(anneal_kws['finish'], device=device) center_step = torch.tensor(anneal_kws['center_step'], device=device, dtype=torch.float) steps_lo_to_hi = torch.tensor(anneal_kws['steps_lo_to_hi'], device=device, dtype=torch.float) return lambda step: start + (finish - start)*torch.sigmoid((torch.tensor(float(step), device=device) - center_step) * (1./steps_lo_to_hi)) class CustomLR(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, lr_lambda, last_epoch=-1): super(CustomLR, self).__init__(optimizer, lr_lambda, last_epoch) def get_lr(self): return [lmbda(self.last_epoch) for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)] def mutual_inf_mc(x_dist): dist = x_dist.__class__ H_y = dist(probs=x_dist.probs.mean(dim=0)).entropy() return (H_y - x_dist.entropy().mean(dim=0)).sum() def run_lstm_on_variable_length_seqs(lstm_module, original_seqs, lower_indices=None, upper_indices=None, total_length=None): bs, tf = original_seqs.shape[:2] if lower_indices is None: lower_indices = torch.zeros(bs, dtype=torch.int) if upper_indices is None: upper_indices = torch.ones(bs, dtype=torch.int) * (tf - 1) if total_length is None: total_length = max(upper_indices) + 1 # This is done so that we can just pass in self.prediction_timesteps # (which we want to INCLUDE, so this will exclude the next timestep). inclusive_break_indices = upper_indices + 1 pad_list = list() for i, seq_len in enumerate(inclusive_break_indices): pad_list.append(original_seqs[i, lower_indices[i]:seq_len]) packed_seqs = rnn.pack_sequence(pad_list, enforce_sorted=False) packed_output, (h_n, c_n) = lstm_module(packed_seqs) output, _ = rnn.pad_packed_sequence(packed_output, batch_first=True, total_length=total_length) return output, (h_n, c_n) def extract_subtensor_per_batch_element(tensor, indices): batch_idxs = torch.arange(start=0, end=len(indices)) batch_idxs = batch_idxs[~torch.isnan(indices)] indices = indices[~torch.isnan(indices)] if indices.size == 0: return None else: indices = indices.long() if tensor.is_cuda: batch_idxs = batch_idxs.to(tensor.get_device()) indices = indices.to(tensor.get_device()) return tensor[batch_idxs, indices] def unpack_RNN_state(state_tuple): # PyTorch returned LSTM states have 3 dims: # (num_layers * num_directions, batch, hidden_size) state = torch.cat(state_tuple, dim=0).permute(1, 0, 2) # Now state is (batch, 2 * num_layers * num_directions, hidden_size) state_size = state.size() return torch.reshape(state, (-1, state_size[1] * state_size[2])) def rsetattr(obj, attr, val): pre, _, post = attr.rpartition('.') return setattr(rgetattr(obj, pre) if pre else obj, post, val) # using wonder's beautiful simplification: # https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects/31174427?noredirect=1#comment86638618_31174427 def rgetattr(obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split('.'))