Change imports to support usage as module

Note that this does require rerunning the `process_data.py` scripts in the example folders so that the dill-files are updated.
This commit is contained in:
Ruben van de Ven 2023-10-09 20:27:29 +02:00
parent f4d860907c
commit dfa1d43f2e
13 changed files with 28 additions and 28 deletions

View file

@ -7,11 +7,11 @@ import torch
import numpy as np import numpy as np
import pandas as pd import pandas as pd
sys.path.append("../../trajectron") sys.path.append("../../")
from tqdm import tqdm from tqdm import tqdm
from model.model_registrar import ModelRegistrar from trajectron.model.model_registrar import ModelRegistrar
from model.trajectron import Trajectron from trajectron.model.trajectron import Trajectron
import evaluation import trajectron.evaluation as evaluation
seed = 0 seed = 0
np.random.seed(seed) np.random.seed(seed)

View file

@ -4,10 +4,10 @@ import numpy as np
import pandas as pd import pandas as pd
import dill import dill
sys.path.append("../../trajectron") sys.path.append("../../")
from environment import Environment, Scene, Node from trajectron.environment import Environment, Scene, Node
from utils import maybe_makedirs from trajectron.utils import maybe_makedirs
from environment import derivative_of from trajectron.environment import derivative_of
desired_max_time = 100 desired_max_time = 100
pred_indices = [2, 3] pred_indices = [2, 3]

View file

@ -1,6 +1,6 @@
import torch import torch
import numpy as np import numpy as np
from model.dataset.homography_warper import get_rotation_matrix2d, warp_affine_crop from trajectron.model.dataset.homography_warper import get_rotation_matrix2d, warp_affine_crop
class Map(object): class Map(object):

View file

@ -1,7 +1,7 @@
import random import random
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from environment import DoubleHeaderNumpyArray from trajectron.environment import DoubleHeaderNumpyArray
from ncls import NCLS from ncls import NCLS

View file

@ -2,8 +2,8 @@ import numpy as np
from scipy.interpolate import RectBivariateSpline from scipy.interpolate import RectBivariateSpline
from scipy.ndimage import binary_dilation from scipy.ndimage import binary_dilation
from scipy.stats import gaussian_kde from scipy.stats import gaussian_kde
from utils import prediction_output_to_trajectories from trajectron.utils import prediction_output_to_trajectories
import visualization import trajectron.visualization
from matplotlib import pyplot as plt from matplotlib import pyplot as plt

View file

@ -1,7 +1,7 @@
import torch import torch
import torch.distributions as td import torch.distributions as td
import numpy as np import numpy as np
from model.model_utils import ModeKeys from trajectron.model.model_utils import ModeKeys
class DiscreteLatent(object): class DiscreteLatent(object):

View file

@ -1,7 +1,7 @@
import torch import torch
import torch.distributions as td import torch.distributions as td
import numpy as np import numpy as np
from model.model_utils import to_one_hot from trajectron.model.model_utils import to_one_hot
class GMM2D(td.Distribution): class GMM2D(td.Distribution):

View file

@ -1,4 +1,4 @@
from model.dynamics import Dynamic from trajectron.model.dynamics import Dynamic
class Linear(Dynamic): class Linear(Dynamic):

View file

@ -1,7 +1,7 @@
import torch import torch
from model.dynamics import Dynamic from trajectron.model.dynamics import Dynamic
from utils import block_diag from trajectron.utils import block_diag
from model.components import GMM2D from trajectron.model.components import GMM2D
class SingleIntegrator(Dynamic): class SingleIntegrator(Dynamic):

View file

@ -1,8 +1,8 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from model.dynamics import Dynamic from trajectron.model.dynamics import Dynamic
from utils import block_diag from trajectron.utils import block_diag
from model.components import GMM2D from trajectron.model.components import GMM2D
class Unicycle(Dynamic): class Unicycle(Dynamic):

View file

@ -2,10 +2,10 @@ import warnings
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.optim as optim import torch.optim as optim
from model.components import * from trajectron.model.components import *
from model.model_utils import * from trajectron.model.model_utils import *
import model.dynamics as dynamic_module import trajectron.model.dynamics as dynamic_module
from environment.scene_graph import DirectedEdge from trajectron.environment.scene_graph import DirectedEdge
class MultimodalGenerativeCVAE(object): class MultimodalGenerativeCVAE(object):

View file

@ -1,7 +1,7 @@
import torch import torch
import numpy as np import numpy as np
from model.mgcvae import MultimodalGenerativeCVAE from trajectron.model.mgcvae import MultimodalGenerativeCVAE
from model.dataset import get_timesteps_data, restore from trajectron.model.dataset import get_timesteps_data, restore
class Trajectron(object): class Trajectron(object):

View file

@ -1,4 +1,4 @@
from utils import prediction_output_to_trajectories from trajectron.utils import prediction_output_to_trajectories
from scipy import linalg from scipy import linalg
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.patches as patches import matplotlib.patches as patches