Trajectory prediction - test in browser
This commit is contained in:
parent
4fa3ce95ee
commit
9ba283ca9b
7 changed files with 748 additions and 0 deletions
5
run_server.py
Normal file
5
run_server.py
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
from trajpred import plumber
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
plumber.start()
|
||||||
|
|
0
trajpred/__init__.py
Normal file
0
trajpred/__init__.py
Normal file
142
trajpred/config.py
Normal file
142
trajpred/config.py
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
'--verbose',
|
||||||
|
'-v',
|
||||||
|
help="Increase verbosity. Add multiple times to increase further.",
|
||||||
|
action='count', default=0
|
||||||
|
)
|
||||||
|
|
||||||
|
# parser.add_argument('--foo')
|
||||||
|
inference_parser = parser.add_argument_group('inference server')
|
||||||
|
connection_parser = parser.add_argument_group('connection')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--model_dir",
|
||||||
|
help="directory with the model to use for inference",
|
||||||
|
type=str, # TODO: make into Path
|
||||||
|
default='./experiments/pedestrians/models/models_04_Oct_2023_21_04_48_eth_vel_ar3')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--conf",
|
||||||
|
help="path to json config file for hyperparameters, relative to model_dir",
|
||||||
|
type=str,
|
||||||
|
default='config.json')
|
||||||
|
|
||||||
|
# Model Parameters (hyperparameters)
|
||||||
|
inference_parser.add_argument("--offline_scene_graph",
|
||||||
|
help="whether to precompute the scene graphs offline, options are 'no' and 'yes'",
|
||||||
|
type=str,
|
||||||
|
default='yes')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--dynamic_edges",
|
||||||
|
help="whether to use dynamic edges or not, options are 'no' and 'yes'",
|
||||||
|
type=str,
|
||||||
|
default='yes')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--edge_state_combine_method",
|
||||||
|
help="the method to use for combining edges of the same type",
|
||||||
|
type=str,
|
||||||
|
default='sum')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--edge_influence_combine_method",
|
||||||
|
help="the method to use for combining edge influences",
|
||||||
|
type=str,
|
||||||
|
default='attention')
|
||||||
|
|
||||||
|
inference_parser.add_argument('--edge_addition_filter',
|
||||||
|
nargs='+',
|
||||||
|
help="what scaling to use for edges as they're created",
|
||||||
|
type=float,
|
||||||
|
default=[0.25, 0.5, 0.75, 1.0]) # We don't automatically pad left with 0.0, if you want a sharp
|
||||||
|
# and short edge addition, then you need to have a 0.0 at the
|
||||||
|
# beginning, e.g. [0.0, 1.0].
|
||||||
|
|
||||||
|
inference_parser.add_argument('--edge_removal_filter',
|
||||||
|
nargs='+',
|
||||||
|
help="what scaling to use for edges as they're removed",
|
||||||
|
type=float,
|
||||||
|
default=[1.0, 0.0]) # We don't automatically pad right with 0.0, if you want a sharp drop off like
|
||||||
|
# the default, then you need to have a 0.0 at the end.
|
||||||
|
|
||||||
|
|
||||||
|
inference_parser.add_argument('--incl_robot_node',
|
||||||
|
help="whether to include a robot node in the graph or simply model all agents",
|
||||||
|
action='store_true')
|
||||||
|
|
||||||
|
inference_parser.add_argument('--map_encoding',
|
||||||
|
help="Whether to use map encoding or not",
|
||||||
|
action='store_true')
|
||||||
|
|
||||||
|
inference_parser.add_argument('--no_edge_encoding',
|
||||||
|
help="Whether to use neighbors edge encoding",
|
||||||
|
action='store_true')
|
||||||
|
|
||||||
|
|
||||||
|
inference_parser.add_argument('--batch_size',
|
||||||
|
help='training batch size',
|
||||||
|
type=int,
|
||||||
|
default=256)
|
||||||
|
|
||||||
|
inference_parser.add_argument('--k_eval',
|
||||||
|
help='how many samples to take during evaluation',
|
||||||
|
type=int,
|
||||||
|
default=25)
|
||||||
|
|
||||||
|
# Data Parameters
|
||||||
|
inference_parser.add_argument("--eval_data_dict",
|
||||||
|
help="what file to load for evaluation data (WHEN NOT USING LIVE DATA)",
|
||||||
|
type=str,
|
||||||
|
default='./experiments/processed/eth_test.pkl')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--output_dir",
|
||||||
|
help="what dir to save output (i.e., saved models, logs, etc) (WHEN NOT USING LIVE OUTPUT)",
|
||||||
|
type=str,
|
||||||
|
default='../experiments/pedestrians/OUT/test_inference')
|
||||||
|
|
||||||
|
|
||||||
|
# inference_parser.add_argument('--device',
|
||||||
|
# help='what device to perform training on',
|
||||||
|
# type=str,
|
||||||
|
# default='cuda:0')
|
||||||
|
|
||||||
|
inference_parser.add_argument("--eval_device",
|
||||||
|
help="what device to use during inference",
|
||||||
|
type=str,
|
||||||
|
default="cpu")
|
||||||
|
|
||||||
|
|
||||||
|
inference_parser.add_argument('--seed',
|
||||||
|
help='manual seed to use, default is 123',
|
||||||
|
type=int,
|
||||||
|
default=123)
|
||||||
|
|
||||||
|
|
||||||
|
# Internal connections.
|
||||||
|
|
||||||
|
connection_parser.add_argument('--zmq-trajectory-addr',
|
||||||
|
help='Manually specity communication addr for the trajectory messages',
|
||||||
|
type=str,
|
||||||
|
default="ipc:///tmp/feeds/traj")
|
||||||
|
|
||||||
|
connection_parser.add_argument('--zmq-camera-stream-addr',
|
||||||
|
help='Manually specity communication addr for the camera stream messages',
|
||||||
|
type=str,
|
||||||
|
default="ipc:///tmp/feeds/img")
|
||||||
|
|
||||||
|
connection_parser.add_argument('--zmq-prediction-addr',
|
||||||
|
help='Manually specity communication addr for the prediction messages',
|
||||||
|
type=str,
|
||||||
|
default="ipc:///tmp/feeds/preds")
|
||||||
|
|
||||||
|
|
||||||
|
connection_parser.add_argument('--ws-port',
|
||||||
|
help='Port to listen for incomming websocket connections. Also serves the testing html-page.',
|
||||||
|
type=int,
|
||||||
|
default=8888)
|
||||||
|
|
||||||
|
connection_parser.add_argument('--bypass-prediction',
|
||||||
|
help='For debugging purpose: websocket input immediately to output',
|
||||||
|
action='store_true')
|
||||||
|
|
38
trajpred/plumber.py
Normal file
38
trajpred/plumber.py
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
import logging
|
||||||
|
from multiprocessing import Process, Queue
|
||||||
|
from trajpred.config import parser
|
||||||
|
from trajpred.prediction_server import InferenceServer, run_inference_server
|
||||||
|
from trajpred.socket_forwarder import run_ws_forwarder
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger("trajpred.plumbing")
|
||||||
|
|
||||||
|
def start():
|
||||||
|
args = parser.parse_args()
|
||||||
|
loglevel = logging.NOTSET if args.verbose > 1 else logging.DEBUG if args.verbose > 0 else logging.INFO
|
||||||
|
logging.basicConfig(
|
||||||
|
level=loglevel,
|
||||||
|
)
|
||||||
|
# rootLogger = logging.getLogger()
|
||||||
|
# rootLogger.setLevel(loglevel)
|
||||||
|
|
||||||
|
movement_q = Queue()
|
||||||
|
prediction_q = Queue()
|
||||||
|
|
||||||
|
|
||||||
|
# instantiating process with arguments
|
||||||
|
procs = [
|
||||||
|
Process(target=run_ws_forwarder, args=(args,))
|
||||||
|
]
|
||||||
|
if not args.bypass_prediction:
|
||||||
|
procs.append(
|
||||||
|
Process(target=run_inference_server, args=(args, movement_q, prediction_q)),
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info("start")
|
||||||
|
for proc in procs:
|
||||||
|
proc.start()
|
||||||
|
|
||||||
|
for proc in procs:
|
||||||
|
proc.join()
|
||||||
|
|
256
trajpred/prediction_server.py
Normal file
256
trajpred/prediction_server.py
Normal file
|
@ -0,0 +1,256 @@
|
||||||
|
# adapted from Trajectron++ online_server.py
|
||||||
|
import logging
|
||||||
|
from multiprocessing import Queue
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
import torch
|
||||||
|
import dill
|
||||||
|
import random
|
||||||
|
import pathlib
|
||||||
|
import numpy as np
|
||||||
|
import trajectron.visualization as vis
|
||||||
|
from trajectron.model.online.online_trajectron import OnlineTrajectron
|
||||||
|
from trajectron.model.model_registrar import ModelRegistrar
|
||||||
|
from trajectron.environment import Environment, Scene
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger("trajpred.inference")
|
||||||
|
|
||||||
|
|
||||||
|
# if not torch.cuda.is_available() or self.config.device == 'cpu':
|
||||||
|
# self.config.device = torch.device('cpu')
|
||||||
|
# else:
|
||||||
|
# if torch.cuda.device_count() == 1:
|
||||||
|
# # If you have CUDA_VISIBLE_DEVICES set, which you should,
|
||||||
|
# # then this will prevent leftover flag arguments from
|
||||||
|
# # messing with the device allocation.
|
||||||
|
# self.config.device = 'cuda:0'
|
||||||
|
|
||||||
|
# self.config.device = torch.device(self.config.device)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def create_online_env(env, hyperparams, scene_idx, init_timestep):
|
||||||
|
test_scene = env.scenes[scene_idx]
|
||||||
|
|
||||||
|
online_scene = Scene(timesteps=init_timestep + 1,
|
||||||
|
map=test_scene.map,
|
||||||
|
dt=test_scene.dt)
|
||||||
|
online_scene.nodes = test_scene.get_nodes_clipped_at_time(
|
||||||
|
timesteps=np.arange(init_timestep - hyperparams['maximum_history_length'],
|
||||||
|
init_timestep + 1),
|
||||||
|
state=hyperparams['state'])
|
||||||
|
online_scene.robot = test_scene.robot
|
||||||
|
online_scene.calculate_scene_graph(attention_radius=env.attention_radius,
|
||||||
|
edge_addition_filter=hyperparams['edge_addition_filter'],
|
||||||
|
edge_removal_filter=hyperparams['edge_removal_filter'])
|
||||||
|
|
||||||
|
return Environment(node_type_list=env.node_type_list,
|
||||||
|
standardization=env.standardization,
|
||||||
|
scenes=[online_scene],
|
||||||
|
attention_radius=env.attention_radius,
|
||||||
|
robot_type=env.robot_type)
|
||||||
|
|
||||||
|
|
||||||
|
def get_maps_for_input(input_dict, scene, hyperparams):
|
||||||
|
scene_maps = list()
|
||||||
|
scene_pts = list()
|
||||||
|
heading_angles = list()
|
||||||
|
patch_sizes = list()
|
||||||
|
nodes_with_maps = list()
|
||||||
|
for node in input_dict:
|
||||||
|
if node.type in hyperparams['map_encoder']:
|
||||||
|
x = input_dict[node]
|
||||||
|
me_hyp = hyperparams['map_encoder'][node.type]
|
||||||
|
if 'heading_state_index' in me_hyp:
|
||||||
|
heading_state_index = me_hyp['heading_state_index']
|
||||||
|
# We have to rotate the map in the opposit direction of the agent to match them
|
||||||
|
if type(heading_state_index) is list: # infer from velocity or heading vector
|
||||||
|
heading_angle = -np.arctan2(x[-1, heading_state_index[1]],
|
||||||
|
x[-1, heading_state_index[0]]) * 180 / np.pi
|
||||||
|
else:
|
||||||
|
heading_angle = -x[-1, heading_state_index] * 180 / np.pi
|
||||||
|
else:
|
||||||
|
heading_angle = None
|
||||||
|
|
||||||
|
scene_map = scene.map[node.type]
|
||||||
|
map_point = x[-1, :2]
|
||||||
|
|
||||||
|
patch_size = hyperparams['map_encoder'][node.type]['patch_size']
|
||||||
|
|
||||||
|
scene_maps.append(scene_map)
|
||||||
|
scene_pts.append(map_point)
|
||||||
|
heading_angles.append(heading_angle)
|
||||||
|
patch_sizes.append(patch_size)
|
||||||
|
nodes_with_maps.append(node)
|
||||||
|
|
||||||
|
if heading_angles[0] is None:
|
||||||
|
heading_angles = None
|
||||||
|
else:
|
||||||
|
heading_angles = torch.Tensor(heading_angles)
|
||||||
|
|
||||||
|
maps = scene_maps[0].get_cropped_maps_from_scene_map_batch(scene_maps,
|
||||||
|
scene_pts=torch.Tensor(scene_pts),
|
||||||
|
patch_size=patch_sizes[0],
|
||||||
|
rotation=heading_angles)
|
||||||
|
|
||||||
|
maps_dict = {node: maps[[i]] for i, node in enumerate(nodes_with_maps)}
|
||||||
|
return maps_dict
|
||||||
|
|
||||||
|
|
||||||
|
class InferenceServer:
|
||||||
|
def __init__(self, config: dict, movement_q: Queue, prediction_q: Queue):
|
||||||
|
self.config = config
|
||||||
|
self.movement_q = movement_q
|
||||||
|
self.prediction_q = prediction_q
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
|
||||||
|
if self.config.seed is not None:
|
||||||
|
random.seed(self.config.seed)
|
||||||
|
np.random.seed(self.config.seed)
|
||||||
|
torch.manual_seed(self.config.seed)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.manual_seed_all(self.config.seed)
|
||||||
|
|
||||||
|
# Choose one of the model directory names under the experiment/*/models folders.
|
||||||
|
# Possibilities are 'vel_ee', 'int_ee', 'int_ee_me', or 'robot'
|
||||||
|
# model_dir = os.path.join(self.config.log_dir, 'int_ee')
|
||||||
|
# model_dir = 'models/models_04_Oct_2023_21_04_48_eth_vel_ar3'
|
||||||
|
|
||||||
|
# Load hyperparameters from json
|
||||||
|
config_file = os.path.join(self.config.model_dir, self.config.conf)
|
||||||
|
if not os.path.exists(config_file):
|
||||||
|
raise ValueError('Config json not found!')
|
||||||
|
with open(config_file, 'r') as conf_json:
|
||||||
|
hyperparams = json.load(conf_json)
|
||||||
|
|
||||||
|
# Add hyperparams from arguments
|
||||||
|
hyperparams['dynamic_edges'] = self.config.dynamic_edges
|
||||||
|
hyperparams['edge_state_combine_method'] = self.config.edge_state_combine_method
|
||||||
|
hyperparams['edge_influence_combine_method'] = self.config.edge_influence_combine_method
|
||||||
|
hyperparams['edge_addition_filter'] = self.config.edge_addition_filter
|
||||||
|
hyperparams['edge_removal_filter'] = self.config.edge_removal_filter
|
||||||
|
hyperparams['batch_size'] = self.config.batch_size
|
||||||
|
hyperparams['k_eval'] = self.config.k_eval
|
||||||
|
hyperparams['offline_scene_graph'] = self.config.offline_scene_graph
|
||||||
|
hyperparams['incl_robot_node'] = self.config.incl_robot_node
|
||||||
|
hyperparams['edge_encoding'] = not self.config.no_edge_encoding
|
||||||
|
hyperparams['use_map_encoding'] = self.config.map_encoding
|
||||||
|
|
||||||
|
output_save_dir = os.path.join(self.config.output_dir, 'pred_figs')
|
||||||
|
pathlib.Path(output_save_dir).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
with open(self.config.eval_data_dict, 'rb') as f:
|
||||||
|
eval_env = dill.load(f, encoding='latin1')
|
||||||
|
|
||||||
|
if eval_env.robot_type is None and hyperparams['incl_robot_node']:
|
||||||
|
eval_env.robot_type = eval_env.NodeType[0] # TODO: Make more general, allow the user to specify?
|
||||||
|
for scene in eval_env.scenes:
|
||||||
|
scene.add_robot_from_nodes(eval_env.robot_type)
|
||||||
|
|
||||||
|
print('Loaded data from %s' % (self.config.eval_data_dict,))
|
||||||
|
|
||||||
|
# Creating a dummy environment with a single scene that contains information about the world.
|
||||||
|
# When using this code, feel free to use whichever scene index or initial timestep you wish.
|
||||||
|
scene_idx = 0
|
||||||
|
|
||||||
|
# You need to have at least acceleration, so you want 2 timesteps of prior data, e.g. [0, 1],
|
||||||
|
# so that you can immediately start incremental inference from the 3rd timestep onwards.
|
||||||
|
init_timestep = 1
|
||||||
|
|
||||||
|
eval_scene = eval_env.scenes[scene_idx]
|
||||||
|
online_env = create_online_env(eval_env, hyperparams, scene_idx, init_timestep)
|
||||||
|
|
||||||
|
model_registrar = ModelRegistrar(self.config.model_dir, self.config.eval_device)
|
||||||
|
model_registrar.load_models(iter_num=100)
|
||||||
|
|
||||||
|
trajectron = OnlineTrajectron(model_registrar,
|
||||||
|
hyperparams,
|
||||||
|
self.config.eval_device)
|
||||||
|
|
||||||
|
# If you want to see what different robot futures do to the predictions, uncomment this line as well as
|
||||||
|
# related "... += adjustment" lines below.
|
||||||
|
# adjustment = np.stack([np.arange(13)/float(i*2.0) for i in range(6, 12)], axis=1)
|
||||||
|
|
||||||
|
# Here's how you'd incrementally run the model, e.g. with streaming data.
|
||||||
|
trajectron.set_environment(online_env, init_timestep)
|
||||||
|
|
||||||
|
for timestep in range(init_timestep + 1, eval_scene.timesteps):
|
||||||
|
input_dict = eval_scene.get_clipped_input_dict(timestep, hyperparams['state'])
|
||||||
|
|
||||||
|
maps = None
|
||||||
|
if hyperparams['use_map_encoding']:
|
||||||
|
maps = get_maps_for_input(input_dict, eval_scene, hyperparams)
|
||||||
|
|
||||||
|
robot_present_and_future = None
|
||||||
|
if eval_scene.robot is not None and hyperparams['incl_robot_node']:
|
||||||
|
robot_present_and_future = eval_scene.robot.get(np.array([timestep,
|
||||||
|
timestep + hyperparams['prediction_horizon']]),
|
||||||
|
hyperparams['state'][eval_scene.robot.type],
|
||||||
|
padding=0.0)
|
||||||
|
robot_present_and_future = np.stack([robot_present_and_future, robot_present_and_future], axis=0)
|
||||||
|
# robot_present_and_future += adjustment
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
dists, preds = trajectron.incremental_forward(input_dict,
|
||||||
|
maps,
|
||||||
|
prediction_horizon=6,
|
||||||
|
num_samples=51,
|
||||||
|
robot_present_and_future=robot_present_and_future,
|
||||||
|
full_dist=True)
|
||||||
|
end = time.time()
|
||||||
|
print("t=%d: took %.2f s (= %.2f Hz) w/ %d nodes and %d edges" % (timestep, end - start,
|
||||||
|
1. / (end - start), len(trajectron.nodes),
|
||||||
|
trajectron.scene_graph.get_num_edges()))
|
||||||
|
|
||||||
|
detailed_preds_dict = dict()
|
||||||
|
for node in eval_scene.nodes:
|
||||||
|
if node in preds:
|
||||||
|
detailed_preds_dict[node] = preds[node]
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(10,10))
|
||||||
|
ax = fig.gca()
|
||||||
|
# fig, ax = plt.subplots()
|
||||||
|
|
||||||
|
# vis.visualize_distribution(ax,
|
||||||
|
# dists)
|
||||||
|
vis.visualize_prediction(ax,
|
||||||
|
{timestep: preds},
|
||||||
|
eval_scene.dt,
|
||||||
|
hyperparams['maximum_history_length'],
|
||||||
|
hyperparams['prediction_horizon'])
|
||||||
|
|
||||||
|
if eval_scene.robot is not None and hyperparams['incl_robot_node']:
|
||||||
|
robot_for_plotting = eval_scene.robot.get(np.array([timestep,
|
||||||
|
timestep + hyperparams['prediction_horizon']]),
|
||||||
|
hyperparams['state'][eval_scene.robot.type])
|
||||||
|
# robot_for_plotting += adjustment
|
||||||
|
|
||||||
|
ax.plot(robot_for_plotting[1:, 1], robot_for_plotting[1:, 0],
|
||||||
|
color='r',
|
||||||
|
linewidth=1.0, alpha=1.0)
|
||||||
|
|
||||||
|
# Current Node Position
|
||||||
|
circle = plt.Circle((robot_for_plotting[0, 1],
|
||||||
|
robot_for_plotting[0, 0]),
|
||||||
|
0.3,
|
||||||
|
facecolor='r',
|
||||||
|
edgecolor='k',
|
||||||
|
lw=0.5,
|
||||||
|
zorder=3)
|
||||||
|
ax.add_artist(circle)
|
||||||
|
|
||||||
|
ax.set_xlim(-10,10)
|
||||||
|
ax.set_ylim(-10,10)
|
||||||
|
fig.suptitle(f"frame {timestep:04d}")
|
||||||
|
fig.savefig(os.path.join(output_save_dir, f'pred_{timestep:04d}.png'))
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
def run_inference_server(config, movement_q: Queue, prediction_q: Queue):
|
||||||
|
s = InferenceServer(config, movement_q, prediction_q)
|
||||||
|
s.run()
|
162
trajpred/socket_forwarder.py
Normal file
162
trajpred/socket_forwarder.py
Normal file
|
@ -0,0 +1,162 @@
|
||||||
|
|
||||||
|
from argparse import Namespace
|
||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
from typing import Set, Union, Dict, Any
|
||||||
|
from typing_extensions import Self
|
||||||
|
|
||||||
|
from urllib.error import HTTPError
|
||||||
|
import tornado.ioloop
|
||||||
|
import tornado.web
|
||||||
|
import tornado.websocket
|
||||||
|
import zmq
|
||||||
|
import zmq.asyncio
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger("trajpred.forwarder")
|
||||||
|
|
||||||
|
|
||||||
|
class WebSocketTrajectoryHandler(tornado.websocket.WebSocketHandler):
|
||||||
|
def initialize(self, zmq_socket: zmq.asyncio.Socket):
|
||||||
|
self.zmq_socket = zmq_socket
|
||||||
|
|
||||||
|
async def on_message(self, message):
|
||||||
|
logger.info(f"recieve: {message}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
await self.zmq_socket.send_string(message)
|
||||||
|
# msg = json.loads(message)
|
||||||
|
except Exception as e:
|
||||||
|
# self.send({'alert': 'Invalid request: {}'.format(e)})
|
||||||
|
logger.exception(e)
|
||||||
|
# self.write_message(u"You said: " + message)
|
||||||
|
|
||||||
|
def open(self, p=None):
|
||||||
|
logger.info(f"connected {self.request.remote_ip}")
|
||||||
|
|
||||||
|
# client disconnected
|
||||||
|
def on_close(self):
|
||||||
|
logger.info(f"Client disconnected: {self.request.remote_ip}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class WebSocketPredictionHandler(tornado.websocket.WebSocketHandler):
|
||||||
|
connections: Set[Self] = set()
|
||||||
|
|
||||||
|
def initialize(self, config):
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
def on_message(self, message):
|
||||||
|
logger.warning(f"Receiving message on send-only ws handler: {message}")
|
||||||
|
|
||||||
|
def open(self, p=None):
|
||||||
|
logger.info(f"Prediction WS connected {self.request.remote_ip}")
|
||||||
|
self.__class__.connections.add(self)
|
||||||
|
|
||||||
|
# client disconnected
|
||||||
|
def on_close(self):
|
||||||
|
self.__class__.rmConnection(self)
|
||||||
|
|
||||||
|
logger.info(f"Client disconnected: {self.request.remote_ip}")
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rmConnection(cls, client):
|
||||||
|
if client not in cls.connections:
|
||||||
|
return
|
||||||
|
cls.connections.remove(client)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def hasConnection(cls, client):
|
||||||
|
return client in cls.connections
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def write_to_clients(cls, msg: Union[bytes, str, Dict[str, Any]]):
|
||||||
|
if msg is None:
|
||||||
|
logger.critical("Tried to send 'none'")
|
||||||
|
return
|
||||||
|
|
||||||
|
toRemove = []
|
||||||
|
for client in cls.connections:
|
||||||
|
try:
|
||||||
|
client.write_message(msg)
|
||||||
|
except tornado.websocket.WebSocketClosedError as e:
|
||||||
|
logger.warning(f"Not properly closed websocket connection")
|
||||||
|
toRemove.append(client) # If we remove it here from the set we get an exception about changing set size during iteration
|
||||||
|
|
||||||
|
for client in toRemove:
|
||||||
|
cls.rmConnection(client)
|
||||||
|
|
||||||
|
class DemoHandler(tornado.web.RequestHandler):
|
||||||
|
def initialize(self, config: Namespace):
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
def get(self):
|
||||||
|
self.render("index.html", ws_port=self.config.ws_port)
|
||||||
|
|
||||||
|
class StaticFileWithHeaderHandler(tornado.web.StaticFileHandler):
|
||||||
|
def set_extra_headers(self, path):
|
||||||
|
"""For subclass to add extra headers to the response"""
|
||||||
|
if path[-5:] == ".html":
|
||||||
|
self.set_header("Access-Control-Allow-Origin", "*")
|
||||||
|
if path[-4:] == ".svg":
|
||||||
|
self.set_header("Content-Type", "image/svg+xml")
|
||||||
|
|
||||||
|
|
||||||
|
class WsRouter:
|
||||||
|
def __init__(self, config: Namespace):
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
context = zmq.asyncio.Context()
|
||||||
|
self.trajectory_socket = context.socket(zmq.PUB)
|
||||||
|
self.trajectory_socket.bind(config.zmq_prediction_addr if config.bypass_prediction else config.zmq_trajection_addr)
|
||||||
|
|
||||||
|
self.prediction_socket = context.socket(zmq.SUB)
|
||||||
|
self.prediction_socket.connect(config.zmq_prediction_addr)
|
||||||
|
self.prediction_socket.setsockopt(zmq.SUBSCRIBE, b'')
|
||||||
|
|
||||||
|
self.application = tornado.web.Application(
|
||||||
|
[
|
||||||
|
(
|
||||||
|
r"/ws/trajectory",
|
||||||
|
WebSocketTrajectoryHandler,
|
||||||
|
{
|
||||||
|
"zmq_socket": self.trajectory_socket
|
||||||
|
},
|
||||||
|
),
|
||||||
|
(
|
||||||
|
r"/ws/prediction",
|
||||||
|
WebSocketPredictionHandler,
|
||||||
|
{
|
||||||
|
"config": config,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
(r"/", DemoHandler, {"config": config}),
|
||||||
|
# (r"/(.*)", StaticFileWithHeaderHandler, {"config": config, "index": 'index.html'}),
|
||||||
|
],
|
||||||
|
template_path = 'trajpred/web/',
|
||||||
|
compiled_template_cache=False)
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
|
||||||
|
evt_loop = asyncio.new_event_loop()
|
||||||
|
asyncio.set_event_loop(evt_loop)
|
||||||
|
|
||||||
|
# loop = tornado.ioloop.IOLoop.current()
|
||||||
|
logger.info(f"Listen on {self.config.ws_port}")
|
||||||
|
self.application.listen(self.config.ws_port)
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
|
||||||
|
task = evt_loop.create_task(self.prediction_forwarder())
|
||||||
|
|
||||||
|
evt_loop.run_forever()
|
||||||
|
|
||||||
|
async def prediction_forwarder(self):
|
||||||
|
logger.info("Starting prediction forwarder")
|
||||||
|
while True:
|
||||||
|
msg = await self.prediction_socket.recv_string()
|
||||||
|
logger.info("Forward: ")
|
||||||
|
WebSocketPredictionHandler.write_to_clients(msg)
|
||||||
|
|
||||||
|
def run_ws_forwarder(config: Namespace):
|
||||||
|
router = WsRouter(config)
|
||||||
|
router.start()
|
145
trajpred/web/index.html
Normal file
145
trajpred/web/index.html
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8">
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||||
|
<title>Trajectory Prediction Browser Test</title>
|
||||||
|
<style>
|
||||||
|
body {
|
||||||
|
background: black;
|
||||||
|
}
|
||||||
|
|
||||||
|
#field {
|
||||||
|
background: white;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
</head>
|
||||||
|
|
||||||
|
<body>
|
||||||
|
<canvas id="field" width="1500" height="1500">
|
||||||
|
|
||||||
|
</canvas>
|
||||||
|
|
||||||
|
<script>
|
||||||
|
// map the field to coordinates of our dummy tracker
|
||||||
|
const field_range = { x: [-10, 10], y: [-10, 10] }
|
||||||
|
|
||||||
|
// Create WebSocket connection.
|
||||||
|
const trajectory_socket = new WebSocket(`ws://${window.location.hostname}:{{ ws_port }}/ws/trajectory`);
|
||||||
|
const prediction_socket = new WebSocket(`ws://${window.location.hostname}:{{ ws_port }}/ws/prediction`);
|
||||||
|
let is_moving = false;
|
||||||
|
const fieldEl = document.getElementById('field');
|
||||||
|
|
||||||
|
let current_data = {}
|
||||||
|
// Listen for messages
|
||||||
|
prediction_socket.addEventListener("message", (event) => {
|
||||||
|
// console.log("Message from server ", event.data);
|
||||||
|
current_data = JSON.parse(event.data);
|
||||||
|
});
|
||||||
|
|
||||||
|
function getMousePos(canvas, evt) {
|
||||||
|
const rect = canvas.getBoundingClientRect();
|
||||||
|
return {
|
||||||
|
x: evt.clientX - rect.left,
|
||||||
|
y: evt.clientY - rect.top
|
||||||
|
};
|
||||||
|
}
|
||||||
|
function mouse_coordinates_to_position(coordinates) {
|
||||||
|
const x_range = field_range.x[1] - field_range.x[0]
|
||||||
|
const x = (coordinates.x / fieldEl.clientWidth) * x_range + field_range.x[0]
|
||||||
|
const y_range = field_range.y[1] - field_range.y[0]
|
||||||
|
const y = (coordinates.y / fieldEl.clientWidth) * y_range + field_range.y[0]
|
||||||
|
return { x: x, y: y }
|
||||||
|
}
|
||||||
|
function position_to_canvas_coordinate(position) {
|
||||||
|
const x_range = field_range.x[1] - field_range.x[0]
|
||||||
|
const y_range = field_range.y[1] - field_range.y[0]
|
||||||
|
return {
|
||||||
|
x: (position.x - field_range.x[0]) * fieldEl.width / x_range,
|
||||||
|
y: (position.y - field_range.y[0]) * fieldEl.width / y_range,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// helper function so we can spread
|
||||||
|
function coord_as_list(coord) {
|
||||||
|
return [coord.x, coord.y]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
let tracker = {}
|
||||||
|
let person_counter = 0
|
||||||
|
|
||||||
|
class Person {
|
||||||
|
constructor(id) {
|
||||||
|
this.id = id;
|
||||||
|
this.history = [];
|
||||||
|
this.prediction = []
|
||||||
|
}
|
||||||
|
|
||||||
|
addToHistory(position) {
|
||||||
|
this.history.push(position);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fieldEl.addEventListener('mousedown', (event) => {
|
||||||
|
person_counter++;
|
||||||
|
tracker[person_counter] = new Person(person_counter);
|
||||||
|
is_moving = true;
|
||||||
|
|
||||||
|
const mousePos = getMousePos(fieldEl, event);
|
||||||
|
const position = mouse_coordinates_to_position(mousePos)
|
||||||
|
tracker[person_counter].addToHistory(position);
|
||||||
|
trajectory_socket.send(JSON.stringify(tracker))
|
||||||
|
});
|
||||||
|
fieldEl.addEventListener('mousemove', (event) => {
|
||||||
|
if (!is_moving) return;
|
||||||
|
const mousePos = getMousePos(fieldEl, event);
|
||||||
|
const position = mouse_coordinates_to_position(mousePos)
|
||||||
|
tracker[person_counter].addToHistory(position);
|
||||||
|
trajectory_socket.send(JSON.stringify(tracker))
|
||||||
|
});
|
||||||
|
document.addEventListener('mouseup', (e) => {
|
||||||
|
is_moving = false;
|
||||||
|
tracker = {}
|
||||||
|
})
|
||||||
|
|
||||||
|
const ctx = fieldEl.getContext("2d");
|
||||||
|
function drawFrame() {
|
||||||
|
ctx.clearRect(0, 0, fieldEl.width, fieldEl.height);
|
||||||
|
ctx.save();
|
||||||
|
for (let id in current_data) {
|
||||||
|
const person = current_data[id];
|
||||||
|
if (person.history.length > 1) {
|
||||||
|
const hist = structuredClone(person.history)
|
||||||
|
// draw current position:
|
||||||
|
ctx.beginPath()
|
||||||
|
ctx.arc(
|
||||||
|
...coord_as_list(position_to_canvas_coordinate(hist[hist.length - 1])),
|
||||||
|
5, //radius
|
||||||
|
0, 2 * Math.PI);
|
||||||
|
ctx.fill()
|
||||||
|
|
||||||
|
ctx.beginPath()
|
||||||
|
ctx.lineWidth = 3;
|
||||||
|
ctx.strokeStyle = "#325FA2";
|
||||||
|
|
||||||
|
ctx.moveTo(...coord_as_list(position_to_canvas_coordinate(hist.shift())));
|
||||||
|
for (const position of hist) {
|
||||||
|
ctx.lineTo(...coord_as_list(position_to_canvas_coordinate(position)))
|
||||||
|
}
|
||||||
|
ctx.stroke();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ctx.restore();
|
||||||
|
|
||||||
|
window.requestAnimationFrame(drawFrame);
|
||||||
|
}
|
||||||
|
|
||||||
|
window.requestAnimationFrame(drawFrame);
|
||||||
|
</script>
|
||||||
|
</body>
|
||||||
|
|
||||||
|
</html>
|
Loading…
Reference in a new issue