2020-04-06 03:43:49 +02:00
|
|
|
import random
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from environment import DoubleHeaderNumpyArray
|
|
|
|
from ncls import NCLS
|
|
|
|
|
|
|
|
|
|
|
|
class Node(object):
|
|
|
|
def __init__(self, node_type, node_id, data, length=None, width=None, height=None, first_timestep=0,
|
|
|
|
is_robot=False, description="", frequency_multiplier=1, non_aug_node=None):
|
|
|
|
self.type = node_type
|
|
|
|
self.id = node_id
|
|
|
|
self.length = length
|
|
|
|
self.width = width
|
|
|
|
self.height = height
|
|
|
|
self.first_timestep = first_timestep
|
|
|
|
self.non_aug_node = non_aug_node
|
|
|
|
|
|
|
|
if data is not None:
|
|
|
|
if isinstance(data, pd.DataFrame):
|
|
|
|
self.data = DoubleHeaderNumpyArray(data.values, list(data.columns))
|
|
|
|
elif isinstance(data, DoubleHeaderNumpyArray):
|
|
|
|
self.data = data
|
|
|
|
else:
|
|
|
|
self.data = None
|
|
|
|
|
|
|
|
self.is_robot = is_robot
|
|
|
|
self._last_timestep = None
|
|
|
|
self.description = description
|
|
|
|
self.frequency_multiplier = frequency_multiplier
|
|
|
|
|
|
|
|
self.forward_in_time_on_next_override = False
|
|
|
|
|
|
|
|
def __eq__(self, other):
|
|
|
|
return ((isinstance(other, self.__class__)
|
|
|
|
or isinstance(self, other.__class__))
|
|
|
|
and self.id == other.id
|
|
|
|
and self.type == other.type)
|
|
|
|
|
|
|
|
def __ne__(self, other):
|
|
|
|
return not self.__eq__(other)
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
return hash((self.type, self.id))
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return '/'.join([self.type.name, self.id])
|
|
|
|
|
2020-12-10 04:42:06 +01:00
|
|
|
def overwrite_data(self, data, header, forward_in_time_on_next_overwrite=False):
|
2020-04-06 03:43:49 +02:00
|
|
|
"""
|
|
|
|
This function hard overwrites the data matrix. When using it you have to make sure that the columns
|
|
|
|
in the new data matrix correspond to the old structure. As well as setting first_timestep.
|
|
|
|
|
|
|
|
:param data: New data matrix
|
|
|
|
:param forward_in_time_on_next_overwrite: On the !!NEXT!! call of overwrite_data first_timestep will be increased.
|
|
|
|
:return: None
|
|
|
|
"""
|
2020-12-10 04:42:06 +01:00
|
|
|
if header is None:
|
|
|
|
self.data.data = data
|
|
|
|
else:
|
|
|
|
self.data = DoubleHeaderNumpyArray(data, header)
|
|
|
|
|
2020-04-06 03:43:49 +02:00
|
|
|
self._last_timestep = None
|
|
|
|
if self.forward_in_time_on_next_override:
|
|
|
|
self.first_timestep += 1
|
|
|
|
self.forward_in_time_on_next_override = forward_in_time_on_next_overwrite
|
|
|
|
|
|
|
|
def scene_ts_to_node_ts(self, scene_ts) -> (np.ndarray, int, int):
|
|
|
|
"""
|
|
|
|
Transforms timestamp from scene into timeframe of node data.
|
|
|
|
|
|
|
|
:param scene_ts: Scene timesteps
|
|
|
|
:return: ts: Transformed timesteps, paddingl: Number of timesteps in scene range which are not available in
|
|
|
|
node data before data is available. paddingu: Number of timesteps in scene range which are not
|
|
|
|
available in node data after data is available.
|
|
|
|
"""
|
|
|
|
paddingl = (self.first_timestep - scene_ts[0]).clip(0)
|
|
|
|
paddingu = (scene_ts[1] - self.last_timestep).clip(0)
|
|
|
|
ts = np.array(scene_ts).clip(min=self.first_timestep, max=self.last_timestep) - self.first_timestep
|
|
|
|
return ts, paddingl, paddingu
|
|
|
|
|
|
|
|
def history_points_at(self, ts) -> int:
|
|
|
|
"""
|
|
|
|
Number of history points in trajectory. Timestep is exclusive.
|
|
|
|
|
|
|
|
:param ts: Scene timestep where the number of history points are queried.
|
|
|
|
:return: Number of history timesteps.
|
|
|
|
"""
|
|
|
|
return ts - self.first_timestep
|
|
|
|
|
|
|
|
def get(self, tr_scene, state, padding=np.nan) -> np.ndarray:
|
|
|
|
"""
|
|
|
|
Returns a time range of multiple properties of the node.
|
|
|
|
|
|
|
|
:param tr_scene: The timestep range (inklusive).
|
|
|
|
:param state: The state description for which the properties are returned.
|
|
|
|
:param padding: The value which should be used for padding if not enough information is available.
|
|
|
|
:return: Array of node property values.
|
|
|
|
"""
|
|
|
|
if tr_scene.size == 1:
|
|
|
|
tr_scene = np.array([tr_scene[0], tr_scene[0]])
|
|
|
|
length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive
|
|
|
|
tr, paddingl, paddingu = self.scene_ts_to_node_ts(tr_scene)
|
|
|
|
data_array = self.data[tr[0]:tr[1] + 1, state]
|
|
|
|
padded_data_array = np.full((length, data_array.shape[1]), fill_value=padding)
|
|
|
|
padded_data_array[paddingl:length - paddingu] = data_array
|
|
|
|
return padded_data_array
|
|
|
|
|
|
|
|
@property
|
|
|
|
def timesteps(self) -> int:
|
|
|
|
"""
|
|
|
|
Number of available timesteps for node.
|
|
|
|
|
|
|
|
:return: Number of available timesteps.
|
|
|
|
"""
|
|
|
|
return self.data.shape[0]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def last_timestep(self) -> int:
|
|
|
|
"""
|
|
|
|
Nodes last timestep in the Scene.
|
|
|
|
|
|
|
|
:return: Nodes last timestep.
|
|
|
|
"""
|
|
|
|
if self._last_timestep is None:
|
|
|
|
self._last_timestep = self.first_timestep + self.timesteps - 1
|
|
|
|
return self._last_timestep
|
|
|
|
|
|
|
|
|
|
|
|
class MultiNode(Node):
|
|
|
|
def __init__(self, node_type, node_id, nodes_list, is_robot=False):
|
|
|
|
super(MultiNode, self).__init__(node_type, node_id, data=None, is_robot=is_robot)
|
|
|
|
self.nodes_list = nodes_list
|
|
|
|
for node in self.nodes_list:
|
|
|
|
node.is_robot = is_robot
|
|
|
|
|
|
|
|
self.first_timestep = min(node.first_timestep for node in self.nodes_list)
|
|
|
|
self._last_timestep = max(node.last_timestep for node in self.nodes_list)
|
|
|
|
|
|
|
|
starts = np.array([node.first_timestep for node in self.nodes_list], dtype=np.int64)
|
|
|
|
ends = np.array([node.last_timestep for node in self.nodes_list], dtype=np.int64)
|
|
|
|
ids = np.arange(len(self.nodes_list), dtype=np.int64)
|
|
|
|
self.interval_tree = NCLS(starts, ends, ids)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def find_non_overlapping_nodes(nodes_list, min_timesteps=1) -> list:
|
|
|
|
"""
|
|
|
|
Greedily finds a set of non-overlapping nodes in the provided scene.
|
|
|
|
|
|
|
|
:return: A list of non-overlapping nodes.
|
|
|
|
"""
|
|
|
|
non_overlapping_nodes = list()
|
|
|
|
nodes = sorted(nodes_list, key=lambda n: n.last_timestep)
|
|
|
|
current_time = 0
|
|
|
|
for node in nodes:
|
|
|
|
if node.first_timestep >= current_time and node.timesteps >= min_timesteps:
|
|
|
|
# Include the node
|
|
|
|
non_overlapping_nodes.append(node)
|
|
|
|
current_time = node.last_timestep
|
|
|
|
|
|
|
|
return non_overlapping_nodes
|
|
|
|
|
|
|
|
def get_node_at_timesteps(self, scene_ts) -> Node:
|
|
|
|
possible_node_ranges = list(self.interval_tree.find_overlap(scene_ts[0], scene_ts[1] + 1))
|
|
|
|
if not possible_node_ranges:
|
|
|
|
return Node(node_type=self.type,
|
|
|
|
node_id='EMPTY',
|
|
|
|
data=self.nodes_list[0].data * np.nan,
|
|
|
|
is_robot=self.is_robot)
|
|
|
|
|
|
|
|
node_idx = random.choice(possible_node_ranges)[2]
|
|
|
|
return self.nodes_list[node_idx]
|
|
|
|
|
|
|
|
def scene_ts_to_node_ts(self, scene_ts) -> (Node, np.ndarray, int, int):
|
|
|
|
"""
|
|
|
|
Transforms timestamp from scene into timeframe of node data.
|
|
|
|
|
|
|
|
:param scene_ts: Scene timesteps
|
|
|
|
:return: ts: Transformed timesteps, paddingl: Number of timesteps in scene range which are not available in
|
|
|
|
node data before data is available. paddingu: Number of timesteps in scene range which are not
|
|
|
|
available in node data after data is available.
|
|
|
|
"""
|
|
|
|
possible_node_ranges = list(self.interval_tree.find_overlap(scene_ts[0], scene_ts[1] + 1))
|
|
|
|
if not possible_node_ranges:
|
|
|
|
return None, None, None, None
|
|
|
|
|
|
|
|
node_idx = random.choice(possible_node_ranges)[2]
|
|
|
|
node = self.nodes_list[node_idx]
|
|
|
|
|
|
|
|
paddingl = (node.first_timestep - scene_ts[0]).clip(0)
|
|
|
|
paddingu = (scene_ts[1] - node.last_timestep).clip(0)
|
|
|
|
ts = np.array(scene_ts).clip(min=node.first_timestep, max=node.last_timestep) - node.first_timestep
|
|
|
|
return node, ts, paddingl, paddingu
|
|
|
|
|
|
|
|
def get(self, tr_scene, state, padding=np.nan) -> np.ndarray:
|
|
|
|
if tr_scene.size == 1:
|
|
|
|
tr_scene = np.array([tr_scene, tr_scene])
|
|
|
|
length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive
|
|
|
|
|
|
|
|
node, tr, paddingl, paddingu = self.scene_ts_to_node_ts(tr_scene)
|
|
|
|
if node is None:
|
|
|
|
state_length = sum([len(entity_dims) for entity_dims in state.values()])
|
|
|
|
return np.full((length, state_length), fill_value=padding)
|
|
|
|
|
|
|
|
data_array = node.data[tr[0]:tr[1] + 1, state]
|
|
|
|
padded_data_array = np.full((length, data_array.shape[1]), fill_value=padding)
|
|
|
|
padded_data_array[paddingl:length - paddingu] = data_array
|
|
|
|
return padded_data_array
|
|
|
|
|
|
|
|
def get_all(self, tr_scene, state, padding=np.nan) -> np.ndarray:
|
|
|
|
# Assumption here is that the user is asking for all of the data in this MultiNode and to return it within a
|
|
|
|
# full scene-sized output array.
|
|
|
|
assert tr_scene.size == 2 and tr_scene[0] == 0 and self.last_timestep <= tr_scene[1]
|
|
|
|
length = tr_scene[1] - tr_scene[0] + 1 # tr is inclusive
|
|
|
|
state_length = sum([len(entity_dims) for entity_dims in state.values()])
|
|
|
|
padded_data_array = np.full((length, state_length), fill_value=padding)
|
|
|
|
for node in self.nodes_list:
|
|
|
|
padded_data_array[node.first_timestep:node.last_timestep + 1] = node.data[:, state]
|
|
|
|
|
|
|
|
return padded_data_array
|
|
|
|
|
|
|
|
def history_points_at(self, ts) -> int:
|
|
|
|
"""
|
|
|
|
Number of history points in trajectory. Timestep is exclusive.
|
|
|
|
|
|
|
|
:param ts: Scene timestep where the number of history points are queried.
|
|
|
|
:return: Number of history timesteps.
|
|
|
|
"""
|
|
|
|
node_idx = next(self.interval_tree.find_overlap(ts, ts + 1))[2]
|
|
|
|
node = self.nodes_list[node_idx]
|
|
|
|
return ts - node.first_timestep
|
|
|
|
|
|
|
|
@property
|
|
|
|
def timesteps(self) -> int:
|
|
|
|
"""
|
|
|
|
Number of available timesteps for node.
|
|
|
|
|
|
|
|
:return: Number of available timesteps.
|
|
|
|
"""
|
|
|
|
return self._last_timestep - self.first_timestep + 1
|