Trajectron-plus-plus/trajectron/environment/scene_graph.py

494 lines
19 KiB
Python
Raw Normal View History

import numpy as np
from scipy.spatial.distance import pdist, squareform
import scipy.signal as ss
from collections import defaultdict
import warnings
from .node import Node
class Edge(object):
def __init__(self, curr_node, other_node):
self.id = self.get_edge_id(curr_node, other_node)
self.type = self.get_edge_type(curr_node, other_node)
self.curr_node = curr_node
self.other_node = other_node
@staticmethod
def get_edge_id(n1, n2):
raise NotImplementedError("Use one of the Edge subclasses!")
@staticmethod
def get_str_from_types(nt1, nt2):
raise NotImplementedError("Use one of the Edge subclasses!")
@staticmethod
def get_edge_type(n1, n2):
raise NotImplementedError("Use one of the Edge subclasses!")
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.id == other.id)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.id)
def __repr__(self):
return self.id
class UndirectedEdge(Edge):
def __init__(self, curr_node, other_node):
super(UndirectedEdge, self).__init__(curr_node, other_node)
@staticmethod
def get_edge_id(n1, n2):
return '-'.join(sorted([str(n1), str(n2)]))
@staticmethod
def get_str_from_types(nt1, nt2):
return '-'.join(sorted([nt1.name, nt2.name]))
@staticmethod
def get_edge_type(n1, n2):
return '-'.join(sorted([n1.type.name, n2.type.name]))
class DirectedEdge(Edge):
def __init__(self, curr_node, other_node):
super(DirectedEdge, self).__init__(curr_node, other_node)
@staticmethod
def get_edge_id(n1, n2):
return '->'.join([str(n1), str(n2)])
@staticmethod
def get_str_from_types(nt1, nt2):
return '->'.join([nt1.name, nt2.name])
@staticmethod
def get_edge_type(n1, n2):
return '->'.join([n1.type.name, n2.type.name])
class TemporalSceneGraph(object):
def __init__(self,
edge_radius,
nodes=None,
adj_cube=np.zeros((1, 0, 0)),
weight_cube=np.zeros((1, 0, 0)),
node_type_mat=np.zeros((0, 0)),
edge_scaling=None):
self.edge_radius = edge_radius
self.nodes = nodes
if nodes is None:
self.nodes = np.array([])
self.adj_cube = adj_cube
self.weight_cube = weight_cube
self.node_type_mat = node_type_mat
self.adj_mat = np.max(self.adj_cube, axis=0).clip(max=1.0)
self.edge_scaling = edge_scaling
self.node_index_lookup = None
self.calculate_node_index_lookup()
def calculate_node_index_lookup(self):
node_index_lookup = dict()
for i, node in enumerate(self.nodes):
node_index_lookup[node] = i
self.node_index_lookup = node_index_lookup
def get_num_edges(self, t=0):
return np.sum(self.adj_cube[t]) // 2
def get_index(self, node):
return self.node_index_lookup[node]
@classmethod
def create_from_temp_scene_dict(cls,
scene_temp_dict,
attention_radius,
duration=1,
edge_addition_filter=None,
edge_removal_filter=None,
online=False):
"""
Construct a spatiotemporal graph from node positions in a dataset.
:param scene_temp_dict: Dict with all nodes in scene as keys and np.ndarray with positions as value
:param attention_radius: Attention radius dict.
:param duration: Temporal duration of the graph.
:param edge_addition_filter: -
:param edge_removal_filter: -
:return: TemporalSceneGraph
"""
nodes = scene_temp_dict.keys()
N = len(nodes)
total_timesteps = duration
if N == 0:
return TemporalSceneGraph(attention_radius)
position_cube = np.full((total_timesteps, N, 2), np.nan)
adj_cube = np.zeros((total_timesteps, N, N), dtype=np.int8)
2023-10-04 21:16:02 +02:00
dist_cube = np.zeros((total_timesteps, N, N), dtype=float)
node_type_mat = np.zeros((N, N), dtype=np.int8)
2023-10-04 21:16:02 +02:00
node_attention_mat = np.zeros((N, N), dtype=float)
for node_idx, node in enumerate(nodes):
if online:
# RingBuffers do not have a fixed constant size. Instead, they grow up to their capacity. Thus,
# we need to fill the values preceding the RingBuffer values with NaNs to make them fill the
# position_cube.
position_cube[-scene_temp_dict[node].shape[0]:, node_idx] = scene_temp_dict[node]
else:
position_cube[:, node_idx] = scene_temp_dict[node]
node_type_mat[:, node_idx] = node.type.value
for node_idx_from, node_from in enumerate(nodes):
node_attention_mat[node_idx_from, node_idx] = attention_radius[(node_from.type, node.type)]
np.fill_diagonal(node_type_mat, 0)
for timestep in range(position_cube.shape[0]):
dists = squareform(pdist(position_cube[timestep], metric='euclidean'))
# Put a 1 for all agent pairs which are closer than the edge_radius.
# Can produce a warning as dists can be nan if no data for node is available.
# This is accepted as nan <= x evaluates to False
with warnings.catch_warnings():
warnings.simplefilter("ignore")
adj_matrix = (dists <= node_attention_mat).astype(np.int8) * node_type_mat
# Remove self-loops.
np.fill_diagonal(adj_matrix, 0)
adj_cube[timestep] = adj_matrix
dist_cube[timestep] = dists
dist_cube[np.isnan(dist_cube)] = 0.
weight_cube = np.divide(1.,
dist_cube,
out=np.zeros_like(dist_cube),
where=(dist_cube > 0.))
edge_scaling = None
if edge_addition_filter is not None and edge_removal_filter is not None:
edge_scaling = cls.calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter)
tsg = cls(attention_radius,
np.array(list(nodes)),
adj_cube, weight_cube,
node_type_mat,
edge_scaling=edge_scaling)
return tsg
@staticmethod
def calculate_edge_scaling(adj_cube, edge_addition_filter, edge_removal_filter):
shifted_right = np.pad(adj_cube, ((len(edge_addition_filter) - 1, 0), (0, 0), (0, 0)), 'constant', constant_values=0)
new_edges = np.minimum(
ss.convolve(shifted_right, np.reshape(edge_addition_filter, (-1, 1, 1)), 'full'), 1.
)[(len(edge_addition_filter) - 1):-(len(edge_addition_filter) - 1)]
new_edges[adj_cube == 0] = 0
result = np.minimum(
ss.convolve(new_edges, np.reshape(edge_removal_filter, (-1, 1, 1)), 'full'), 1.
)[:-(len(edge_removal_filter) - 1)]
return result
def to_scene_graph(self, t, t_hist=0, t_fut=0):
"""
Creates a Scene Graph from a Temporal Scene Graph
:param t: Time in Temporal Scene Graph for which Scene Graph is created.
:param t_hist: Number of history timesteps which are considered to form edges in Scene Graph.
:param t_fut: Number of future timesteps which are considered to form edges in Scene Graph.
:return: SceneGraph
"""
lower_t = np.clip(t-t_hist, a_min=0, a_max=None)
higher_t = np.clip(t + t_fut + 1, a_min=None, a_max=self.adj_cube.shape[0] + 1)
adj_mat = np.max(self.adj_cube[lower_t:higher_t], axis=0)
weight_mat = np.max(self.weight_cube[lower_t:higher_t], axis=0)
return SceneGraph(self.edge_radius,
self.nodes,
adj_mat,
weight_mat,
self.node_type_mat,
self.node_index_lookup,
edge_scaling=self.edge_scaling[t] if self.edge_scaling is not None else None)
class SceneGraph(object):
def __init__(self,
edge_radius,
nodes=None,
adj_mat=np.zeros((0, 0)),
weight_mat=np.zeros((0, 0)),
node_type_mat=np.zeros((0, 0)),
node_index_lookup=None,
edge_scaling=None):
self.edge_radius = edge_radius
self.nodes = nodes
if nodes is None:
self.nodes = np.array([])
self.node_type_mat = node_type_mat
self.adj_mat = adj_mat
self.weight_mat = weight_mat
self.edge_scaling = edge_scaling
self.node_index_lookup = node_index_lookup
def get_index(self, node):
return self.node_index_lookup[node]
def get_num_edges(self):
return np.sum(self.adj_mat) // 2
def get_neighbors(self, node, node_type):
"""
Get all neighbors of a node.
:param node: Node for which all neighbors are returned.
:param node_type: Specifies node types which are returned.
:return: List of all neighbors.
"""
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
mask = ((self.node_type_mat[node_index] == node_type.value) * connection_mask)
return self.nodes[mask]
def get_edge_scaling(self, node=None):
if node is None:
return self.edge_scaling
else:
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
return self.edge_scaling[node_index, connection_mask]
def get_edge_weight(self, node=None):
if node is None:
return self.weight_mat
else:
node_index = self.get_index(node)
connection_mask = self.get_connection_mask(node_index)
return self.weight_mat[node_index, connection_mask]
def get_connection_mask(self, node_index):
if self.edge_scaling is None: # We do not use edge scaling
return self.adj_mat[node_index] > 0.
else:
return self.edge_scaling[node_index] > 1e-2
def __sub__(self, other):
new_nodes = [node for node in self.nodes if node not in other.nodes]
removed_nodes = [node for node in other.nodes if node not in self.nodes]
our_types = set(node.type for node in self.nodes)
other_types = set(node.type for node in other.nodes)
all_node_types = our_types | other_types
new_neighbors = defaultdict(lambda: defaultdict(set))
for node in self.nodes:
if node in removed_nodes:
continue
if node in other.nodes:
for node_type in all_node_types:
new_items = set(self.get_neighbors(node, node_type)) - set(other.get_neighbors(node, node_type))
if len(new_items) > 0:
new_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = new_items
else:
for node_type in our_types:
neighbors = self.get_neighbors(node, node_type)
if len(neighbors) > 0:
new_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = set(neighbors)
removed_neighbors = defaultdict(lambda: defaultdict(set))
for node in other.nodes:
if node in removed_nodes:
continue
if node in self.nodes:
for node_type in all_node_types:
removed_items = set(other.get_neighbors(node, node_type)) - set(self.get_neighbors(node, node_type))
if len(removed_items) > 0:
removed_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = removed_items
else:
for node_type in other_types:
neighbors = other.get_neighbors(node, node_type)
if len(neighbors) > 0:
removed_neighbors[node][DirectedEdge.get_edge_type(node, Node(node_type, None, None))] = set(neighbors)
return new_nodes, removed_nodes, new_neighbors, removed_neighbors
if __name__ == '__main__':
from environment import NodeTypeEnum
import time
# # # # # # # # # # # # # # # # #
# Testing edge mask calculation #
# # # # # # # # # # # # # # # # #
B = np.array([[0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
[1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0]])[:, :, np.newaxis, np.newaxis]
print(B.shape)
edge_addition_filter = [0.25, 0.5, 0.75, 1.0]
edge_removal_filter = [1.0, 0.5, 0.0]
for i in range(B.shape[0]):
A = B[i] # (time, N, N)
print(A[:, 0, 0])
start = time.time()
new_edges = np.minimum(ss.convolve(A, np.reshape(edge_addition_filter, (-1, 1, 1)), 'full'), 1.)[(len(edge_addition_filter) - 1):]
old_edges = np.minimum(ss.convolve(A, np.reshape(edge_removal_filter, (-1, 1, 1)), 'full'), 1.)[:-(len(edge_removal_filter) - 1)]
res = np.minimum(new_edges + old_edges, 1.)[:, 0, 0]
end = time.time()
print(end - start)
print(res)
start = time.time()
res = TemporalSceneGraph.calculate_edge_scaling(A, edge_addition_filter, edge_removal_filter)[:, 0, 0]
end = time.time()
print(end - start)
print(res)
print('-'*40)
# # # # # # # # # # # # # # #
# Testing graph subtraction #
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
node_type_list = ['PEDESTRIAN',
'BICYCLE',
'VEHICLE']
nte = NodeTypeEnum(node_type_list)
attention_radius = dict()
attention_radius[(nte.PEDESTRIAN, nte.PEDESTRIAN)] = 5.0
attention_radius[(nte.PEDESTRIAN, nte.VEHICLE)] = 20.0
attention_radius[(nte.PEDESTRIAN, nte.BICYCLE)] = 10.0
attention_radius[(nte.VEHICLE, nte.PEDESTRIAN)] = 20.0
attention_radius[(nte.VEHICLE, nte.VEHICLE)] = 20.0
attention_radius[(nte.VEHICLE, nte.BICYCLE)] = 20.0
attention_radius[(nte.BICYCLE, nte.PEDESTRIAN)] = 10.0
attention_radius[(nte.BICYCLE, nte.VEHICLE)] = 20.0
attention_radius[(nte.BICYCLE, nte.BICYCLE)] = 10.0
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([1, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([1, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([20, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([1, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([10, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([20, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)
# # # # # # # # # # # # # # #
print('\n' + '-' * 40 + '\n')
scene_dict1 = {Node(nte.PEDESTRIAN, node_id='1'): np.array([0, 0]),
Node(nte.PEDESTRIAN, node_id='2'): np.array([0, 1])}
sg1 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict1,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
scene_dict2 = {Node(nte.PEDESTRIAN, node_id='2'): np.array([10, 1]),
Node(nte.PEDESTRIAN, node_id='3'): np.array([12, 1]),
Node(nte.PEDESTRIAN, node_id='4'): np.array([13, 1])}
sg2 = TemporalSceneGraph.create_from_temp_scene_dict(
scene_dict2,
attention_radius=attention_radius,
duration=1,
edge_addition_filter=[0.25, 0.5, 0.75, 1.0],
edge_removal_filter=[1.0, 0.0]).to_scene_graph(t=0)
new_nodes, removed_nodes, new_neighbors, removed_neighbors = sg2 - sg1
print('New Nodes:', new_nodes)
print('Removed Nodes:', removed_nodes)
print('New Neighbors:', new_neighbors)
print('Removed Neighbors:', removed_neighbors)