2020-04-06 03:43:49 +02:00
|
|
|
import copy
|
|
|
|
import numpy as np
|
|
|
|
from .scene_graph import TemporalSceneGraph, SceneGraph
|
|
|
|
from .node import MultiNode
|
|
|
|
|
|
|
|
|
|
|
|
class Scene(object):
|
|
|
|
def __init__(self, timesteps, map=None, dt=1, name="", frequency_multiplier=1, aug_func=None, non_aug_scene=None):
|
|
|
|
self.map = map
|
|
|
|
self.timesteps = timesteps
|
|
|
|
self.dt = dt
|
|
|
|
self.name = name
|
|
|
|
|
|
|
|
self.nodes = []
|
|
|
|
|
|
|
|
self.robot = None
|
|
|
|
|
|
|
|
self.temporal_scene_graph = None
|
|
|
|
|
|
|
|
self.frequency_multiplier = frequency_multiplier
|
|
|
|
|
|
|
|
self.description = ""
|
|
|
|
|
|
|
|
self.aug_func = aug_func
|
|
|
|
self.non_aug_scene = non_aug_scene
|
|
|
|
|
|
|
|
def add_robot_from_nodes(self, robot_type):
|
2020-12-10 04:42:06 +01:00
|
|
|
scenes = [self]
|
|
|
|
if hasattr(self, 'augmented'):
|
|
|
|
scenes += self.augmented
|
2020-04-06 03:43:49 +02:00
|
|
|
|
2020-12-10 04:42:06 +01:00
|
|
|
for scn in scenes:
|
|
|
|
nodes_list = [node for node in scn.nodes if node.type == robot_type]
|
|
|
|
non_overlapping_nodes = MultiNode.find_non_overlapping_nodes(nodes_list, min_timesteps=3)
|
|
|
|
scn.robot = MultiNode(robot_type, 'ROBOT', non_overlapping_nodes, is_robot=True)
|
2020-04-06 03:43:49 +02:00
|
|
|
|
2020-12-10 04:42:06 +01:00
|
|
|
for node in non_overlapping_nodes:
|
|
|
|
scn.nodes.remove(node)
|
|
|
|
scn.nodes.append(scn.robot)
|
|
|
|
|
|
|
|
def get_clipped_input_dict(self, timestep, state):
|
|
|
|
input_dict = dict()
|
2020-04-06 03:43:49 +02:00
|
|
|
existing_nodes = self.get_nodes_clipped_at_time(timesteps=np.array([timestep]),
|
|
|
|
state=state)
|
|
|
|
tr_scene = np.array([timestep, timestep])
|
|
|
|
for node in existing_nodes:
|
2020-12-10 04:42:06 +01:00
|
|
|
input_dict[node] = node.get(tr_scene, state[node.type])
|
2020-04-06 03:43:49 +02:00
|
|
|
|
2020-12-10 04:42:06 +01:00
|
|
|
return input_dict
|
2020-04-06 03:43:49 +02:00
|
|
|
|
|
|
|
def get_scene_graph(self,
|
|
|
|
timestep,
|
|
|
|
attention_radius=None,
|
|
|
|
edge_addition_filter=None,
|
|
|
|
edge_removal_filter=None) -> SceneGraph:
|
|
|
|
"""
|
|
|
|
Returns the Scene Graph for a given timestep. If the Temporal Scene Graph was pre calculated,
|
|
|
|
the temporal scene graph is sliced. Otherwise the scene graph is calculated on the spot.
|
|
|
|
|
|
|
|
:param timestep: Timestep for which the scene graph is returned.
|
|
|
|
:param attention_radius: Attention radius for each node type permutation. (Only online)
|
|
|
|
:param edge_addition_filter: Filter for adding edges (Only online)
|
|
|
|
:param edge_removal_filter: Filter for removing edges (Only online)
|
|
|
|
:return: Scene Graph for given timestep.
|
|
|
|
"""
|
|
|
|
if self.temporal_scene_graph is None:
|
|
|
|
timestep_range = np.array([timestep - len(edge_removal_filter), timestep])
|
|
|
|
node_pos_dict = dict()
|
|
|
|
present_nodes = self.present_nodes(np.array([timestep]))
|
|
|
|
|
|
|
|
for node in present_nodes[timestep]:
|
|
|
|
node_pos_dict[node] = np.squeeze(node.get(timestep_range, {'position': ['x', 'y']}))
|
|
|
|
tsg = TemporalSceneGraph.create_from_temp_scene_dict(node_pos_dict,
|
|
|
|
attention_radius,
|
|
|
|
duration=(len(edge_removal_filter) + 1),
|
|
|
|
edge_addition_filter=edge_addition_filter,
|
|
|
|
edge_removal_filter=edge_removal_filter
|
|
|
|
)
|
|
|
|
|
|
|
|
return tsg.to_scene_graph(t=len(edge_removal_filter),
|
|
|
|
t_hist=len(edge_removal_filter),
|
|
|
|
t_fut=len(edge_addition_filter))
|
|
|
|
else:
|
|
|
|
return self.temporal_scene_graph.to_scene_graph(timestep,
|
|
|
|
len(edge_removal_filter),
|
|
|
|
len(edge_addition_filter))
|
|
|
|
|
|
|
|
def calculate_scene_graph(self,
|
|
|
|
attention_radius,
|
|
|
|
edge_addition_filter=None,
|
|
|
|
edge_removal_filter=None) -> None:
|
|
|
|
"""
|
|
|
|
Calculate the Temporal Scene Graph for the entire Scene.
|
|
|
|
|
|
|
|
:param attention_radius: Attention radius for each node type permutation.
|
|
|
|
:param edge_addition_filter: Filter for adding edges.
|
|
|
|
:param edge_removal_filter: Filter for removing edges.
|
|
|
|
:return: None
|
|
|
|
"""
|
|
|
|
timestep_range = np.array([0, self.timesteps-1])
|
|
|
|
node_pos_dict = dict()
|
|
|
|
|
|
|
|
for node in self.nodes:
|
|
|
|
if type(node) is MultiNode:
|
|
|
|
node_pos_dict[node] = np.squeeze(node.get_all(timestep_range, {'position': ['x', 'y']}))
|
|
|
|
else:
|
|
|
|
node_pos_dict[node] = np.squeeze(node.get(timestep_range, {'position': ['x', 'y']}))
|
|
|
|
|
|
|
|
self.temporal_scene_graph = TemporalSceneGraph.create_from_temp_scene_dict(node_pos_dict,
|
|
|
|
attention_radius,
|
|
|
|
duration=self.timesteps,
|
|
|
|
edge_addition_filter=edge_addition_filter,
|
|
|
|
edge_removal_filter=edge_removal_filter)
|
|
|
|
|
|
|
|
def duration(self):
|
|
|
|
"""
|
|
|
|
Calculates the duration of the scene.
|
|
|
|
|
|
|
|
:return: Duration of the scene in s.
|
|
|
|
"""
|
|
|
|
return self.timesteps * self.dt
|
|
|
|
|
|
|
|
def present_nodes(self,
|
|
|
|
timesteps,
|
|
|
|
type=None,
|
|
|
|
min_history_timesteps=0,
|
|
|
|
min_future_timesteps=0,
|
|
|
|
return_robot=True) -> dict:
|
|
|
|
"""
|
|
|
|
Finds all present nodes in the scene at a given timestemp
|
|
|
|
|
|
|
|
:param timesteps: Timestep(s) for which all present nodes should be returned
|
|
|
|
:param type: Node type which should be returned. If None all node types are returned.
|
|
|
|
:param min_history_timesteps: Minimum history timesteps of a node to be returned.
|
|
|
|
:param min_future_timesteps: Minimum future timesteps of a node to be returned.
|
|
|
|
:param return_robot: Return a node if it is the robot.
|
|
|
|
:return: Dictionary with timesteps as keys and list of nodes as value.
|
|
|
|
"""
|
|
|
|
|
|
|
|
present_nodes = {}
|
|
|
|
|
|
|
|
for node in self.nodes:
|
|
|
|
if node.is_robot and not return_robot:
|
|
|
|
continue
|
|
|
|
if type is None or node.type == type:
|
|
|
|
lower_bound = timesteps - min_history_timesteps
|
|
|
|
upper_bound = timesteps + min_future_timesteps
|
|
|
|
mask = (node.first_timestep <= lower_bound) & (upper_bound <= node.last_timestep)
|
|
|
|
if mask.any():
|
|
|
|
timestep_indices_present = np.nonzero(mask)[0]
|
|
|
|
for timestep_index_present in timestep_indices_present:
|
|
|
|
if timesteps[timestep_index_present] in present_nodes.keys():
|
|
|
|
present_nodes[timesteps[timestep_index_present]].append(node)
|
|
|
|
else:
|
|
|
|
present_nodes[timesteps[timestep_index_present]] = [node]
|
|
|
|
|
|
|
|
return present_nodes
|
|
|
|
|
|
|
|
def get_nodes_clipped_at_time(self, timesteps, state):
|
|
|
|
clipped_nodes = list()
|
|
|
|
|
|
|
|
existing_nodes = self.present_nodes(timesteps)
|
|
|
|
all_nodes = set().union(*existing_nodes.values())
|
|
|
|
if not all_nodes:
|
|
|
|
return clipped_nodes
|
|
|
|
|
|
|
|
tr_scene = np.array([timesteps.min(), timesteps.max()])
|
2020-12-10 04:42:06 +01:00
|
|
|
data_header_memo = dict()
|
2020-04-06 03:43:49 +02:00
|
|
|
for node in all_nodes:
|
|
|
|
if isinstance(node, MultiNode):
|
|
|
|
copied_node = copy.deepcopy(node.get_node_at_timesteps(tr_scene))
|
|
|
|
copied_node.id = self.robot.id
|
|
|
|
else:
|
|
|
|
copied_node = copy.deepcopy(node)
|
|
|
|
|
|
|
|
clipped_value = node.get(tr_scene, state[node.type])
|
2020-12-10 04:42:06 +01:00
|
|
|
|
|
|
|
if node.type not in data_header_memo:
|
|
|
|
data_header = list()
|
|
|
|
for quantity, values in state[node.type].items():
|
|
|
|
for value in values:
|
|
|
|
data_header.append((quantity, value))
|
|
|
|
|
|
|
|
data_header_memo[node.type] = data_header
|
|
|
|
|
|
|
|
copied_node.overwrite_data(clipped_value, data_header_memo[node.type])
|
2020-04-06 03:43:49 +02:00
|
|
|
copied_node.first_timestep = tr_scene[0]
|
|
|
|
|
|
|
|
clipped_nodes.append(copied_node)
|
|
|
|
|
|
|
|
return clipped_nodes
|
|
|
|
|
|
|
|
def sample_timesteps(self, batch_size, min_future_timesteps=0) -> np.ndarray:
|
|
|
|
"""
|
|
|
|
Sample a batch size of possible timesteps for the scene.
|
|
|
|
|
|
|
|
:param batch_size: Number of timesteps to sample.
|
|
|
|
:param min_future_timesteps: Minimum future timesteps in the scene for a timestep to be returned.
|
|
|
|
:return: Numpy Array of sampled timesteps.
|
|
|
|
"""
|
|
|
|
if batch_size > self.timesteps:
|
|
|
|
batch_size = self.timesteps
|
|
|
|
return np.random.choice(np.arange(0, self.timesteps-min_future_timesteps), size=batch_size, replace=False)
|
|
|
|
|
|
|
|
def augment(self):
|
|
|
|
if self.aug_func is not None:
|
|
|
|
return self.aug_func(self)
|
|
|
|
else:
|
|
|
|
return self
|
|
|
|
|
|
|
|
def get_node_by_id(self, id):
|
|
|
|
for node in self.nodes:
|
|
|
|
if node.id == id:
|
|
|
|
return node
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return f"Scene: Duration: {self.duration()}s," \
|
|
|
|
f" Nodes: {len(self.nodes)}," \
|
|
|
|
f" Map: {'Yes' if self.map is not None else 'No'}."
|