Trajectron-plus-plus/trajpred/prediction_server.py

270 lines
12 KiB
Python
Raw Normal View History

# adapted from Trajectron++ online_server.py
import logging
from multiprocessing import Queue
import os
import time
import json
import torch
import dill
import random
import pathlib
import numpy as np
2023-10-11 16:35:15 +02:00
from trajectron.utils import prediction_output_to_trajectories
from trajectron.model.online.online_trajectron import OnlineTrajectron
from trajectron.model.model_registrar import ModelRegistrar
from trajectron.environment import Environment, Scene
import matplotlib.pyplot as plt
2023-10-11 16:35:15 +02:00
import zmq
logger = logging.getLogger("trajpred.inference")
# if not torch.cuda.is_available() or self.config.device == 'cpu':
# self.config.device = torch.device('cpu')
# else:
# if torch.cuda.device_count() == 1:
# # If you have CUDA_VISIBLE_DEVICES set, which you should,
# # then this will prevent leftover flag arguments from
# # messing with the device allocation.
# self.config.device = 'cuda:0'
# self.config.device = torch.device(self.config.device)
def create_online_env(env, hyperparams, scene_idx, init_timestep):
test_scene = env.scenes[scene_idx]
online_scene = Scene(timesteps=init_timestep + 1,
map=test_scene.map,
dt=test_scene.dt)
online_scene.nodes = test_scene.get_nodes_clipped_at_time(
timesteps=np.arange(init_timestep - hyperparams['maximum_history_length'],
init_timestep + 1),
state=hyperparams['state'])
online_scene.robot = test_scene.robot
online_scene.calculate_scene_graph(attention_radius=env.attention_radius,
edge_addition_filter=hyperparams['edge_addition_filter'],
edge_removal_filter=hyperparams['edge_removal_filter'])
return Environment(node_type_list=env.node_type_list,
standardization=env.standardization,
scenes=[online_scene],
attention_radius=env.attention_radius,
robot_type=env.robot_type)
def get_maps_for_input(input_dict, scene, hyperparams):
scene_maps = list()
scene_pts = list()
heading_angles = list()
patch_sizes = list()
nodes_with_maps = list()
for node in input_dict:
if node.type in hyperparams['map_encoder']:
x = input_dict[node]
me_hyp = hyperparams['map_encoder'][node.type]
if 'heading_state_index' in me_hyp:
heading_state_index = me_hyp['heading_state_index']
# We have to rotate the map in the opposit direction of the agent to match them
if type(heading_state_index) is list: # infer from velocity or heading vector
heading_angle = -np.arctan2(x[-1, heading_state_index[1]],
x[-1, heading_state_index[0]]) * 180 / np.pi
else:
heading_angle = -x[-1, heading_state_index] * 180 / np.pi
else:
heading_angle = None
scene_map = scene.map[node.type]
map_point = x[-1, :2]
patch_size = hyperparams['map_encoder'][node.type]['patch_size']
scene_maps.append(scene_map)
scene_pts.append(map_point)
heading_angles.append(heading_angle)
patch_sizes.append(patch_size)
nodes_with_maps.append(node)
if heading_angles[0] is None:
heading_angles = None
else:
heading_angles = torch.Tensor(heading_angles)
maps = scene_maps[0].get_cropped_maps_from_scene_map_batch(scene_maps,
scene_pts=torch.Tensor(scene_pts),
patch_size=patch_sizes[0],
rotation=heading_angles)
maps_dict = {node: maps[[i]] for i, node in enumerate(nodes_with_maps)}
return maps_dict
class InferenceServer:
2023-10-11 16:35:15 +02:00
def __init__(self, config: dict):
self.config = config
2023-10-11 16:35:15 +02:00
context = zmq.Context()
self.trajectory_socket: zmq.Socket = context.socket(zmq.SUB)
self.trajectory_socket.connect(config.zmq_trajectory_addr)
self.trajectory_socket.setsockopt(zmq.SUBSCRIBE, b'')
self.prediction_socket: zmq.Socket = context.socket(zmq.PUB)
self.prediction_socket.bind(config.zmq_prediction_addr)
print(self.prediction_socket)
def run(self):
if self.config.seed is not None:
random.seed(self.config.seed)
np.random.seed(self.config.seed)
torch.manual_seed(self.config.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(self.config.seed)
# Choose one of the model directory names under the experiment/*/models folders.
# Possibilities are 'vel_ee', 'int_ee', 'int_ee_me', or 'robot'
# model_dir = os.path.join(self.config.log_dir, 'int_ee')
# model_dir = 'models/models_04_Oct_2023_21_04_48_eth_vel_ar3'
# Load hyperparameters from json
config_file = os.path.join(self.config.model_dir, self.config.conf)
if not os.path.exists(config_file):
raise ValueError('Config json not found!')
with open(config_file, 'r') as conf_json:
hyperparams = json.load(conf_json)
# Add hyperparams from arguments
hyperparams['dynamic_edges'] = self.config.dynamic_edges
hyperparams['edge_state_combine_method'] = self.config.edge_state_combine_method
hyperparams['edge_influence_combine_method'] = self.config.edge_influence_combine_method
hyperparams['edge_addition_filter'] = self.config.edge_addition_filter
hyperparams['edge_removal_filter'] = self.config.edge_removal_filter
hyperparams['batch_size'] = self.config.batch_size
hyperparams['k_eval'] = self.config.k_eval
hyperparams['offline_scene_graph'] = self.config.offline_scene_graph
hyperparams['incl_robot_node'] = self.config.incl_robot_node
hyperparams['edge_encoding'] = not self.config.no_edge_encoding
hyperparams['use_map_encoding'] = self.config.map_encoding
output_save_dir = os.path.join(self.config.output_dir, 'pred_figs')
pathlib.Path(output_save_dir).mkdir(parents=True, exist_ok=True)
with open(self.config.eval_data_dict, 'rb') as f:
eval_env = dill.load(f, encoding='latin1')
if eval_env.robot_type is None and hyperparams['incl_robot_node']:
eval_env.robot_type = eval_env.NodeType[0] # TODO: Make more general, allow the user to specify?
for scene in eval_env.scenes:
scene.add_robot_from_nodes(eval_env.robot_type)
2023-10-11 16:35:15 +02:00
logger.info('Loaded data from %s' % (self.config.eval_data_dict,))
# Creating a dummy environment with a single scene that contains information about the world.
# When using this code, feel free to use whichever scene index or initial timestep you wish.
scene_idx = 0
# You need to have at least acceleration, so you want 2 timesteps of prior data, e.g. [0, 1],
# so that you can immediately start incremental inference from the 3rd timestep onwards.
init_timestep = 1
eval_scene = eval_env.scenes[scene_idx]
online_env = create_online_env(eval_env, hyperparams, scene_idx, init_timestep)
model_registrar = ModelRegistrar(self.config.model_dir, self.config.eval_device)
model_registrar.load_models(iter_num=100)
trajectron = OnlineTrajectron(model_registrar,
hyperparams,
self.config.eval_device)
# If you want to see what different robot futures do to the predictions, uncomment this line as well as
# related "... += adjustment" lines below.
# adjustment = np.stack([np.arange(13)/float(i*2.0) for i in range(6, 12)], axis=1)
# Here's how you'd incrementally run the model, e.g. with streaming data.
trajectron.set_environment(online_env, init_timestep)
for timestep in range(init_timestep + 1, eval_scene.timesteps):
input_dict = eval_scene.get_clipped_input_dict(timestep, hyperparams['state'])
maps = None
if hyperparams['use_map_encoding']:
maps = get_maps_for_input(input_dict, eval_scene, hyperparams)
robot_present_and_future = None
if eval_scene.robot is not None and hyperparams['incl_robot_node']:
robot_present_and_future = eval_scene.robot.get(np.array([timestep,
timestep + hyperparams['prediction_horizon']]),
hyperparams['state'][eval_scene.robot.type],
padding=0.0)
robot_present_and_future = np.stack([robot_present_and_future, robot_present_and_future], axis=0)
# robot_present_and_future += adjustment
start = time.time()
dists, preds = trajectron.incremental_forward(input_dict,
maps,
prediction_horizon=6,
num_samples=51,
robot_present_and_future=robot_present_and_future,
full_dist=True)
end = time.time()
2023-10-11 16:35:15 +02:00
logger.info("t=%d: took %.2f s (= %.2f Hz) w/ %d nodes and %d edges" % (timestep, end - start,
1. / (end - start), len(trajectron.nodes),
trajectron.scene_graph.get_num_edges()))
2023-10-11 16:35:15 +02:00
# unsure what this bit from online_prediction.py does:
# detailed_preds_dict = dict()
# for node in eval_scene.nodes:
# if node in preds:
# detailed_preds_dict[node] = preds[node]
#adapted from trajectron.visualization
# prediction_dict provides the actual predictions
# histories_dict provides the trajectory used for prediction
# futures_dict is the Ground Truth, which is unvailable in an online setting
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories({timestep: preds},
eval_scene.dt,
hyperparams['maximum_history_length'],
hyperparams['prediction_horizon']
)
assert(len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
response = {}
for node in histories_dict:
history = histories_dict[node]
# future = futures_dict[node]
predictions = prediction_dict[node]
if np.isnan(history[-1]).any():
continue
response[node.id] = {
'id': node.id,
'history': history.tolist(),
'predictions': predictions[0].tolist() # use batch 0
}
data = json.dumps(response)
self.prediction_socket.send_string(data)
# time.sleep(1)
# print(prediction_dict)
# print(histories_dict)
# print(futures_dict)
2023-10-11 16:35:15 +02:00
def run_inference_server(config):
s = InferenceServer(config)
s.run()