Trajectron-plus-plus/trajectron/visualization/visualization.py

131 lines
4.9 KiB
Python
Raw Normal View History

from trajectron.utils import prediction_output_to_trajectories
from scipy import linalg
2020-01-13 19:55:45 +01:00
import matplotlib.pyplot as plt
import matplotlib.patches as patches
2020-01-13 19:55:45 +01:00
import matplotlib.patheffects as pe
import numpy as np
import seaborn as sns
2020-01-13 19:55:45 +01:00
def plot_trajectories(ax,
prediction_dict,
histories_dict,
futures_dict,
line_alpha=0.7,
line_width=0.2,
edge_width=2,
circle_edge_width=0.5,
node_circle_size=0.3,
batch_num=0,
kde=False):
2020-01-13 19:55:45 +01:00
cmap = ['k', 'b', 'y', 'g', 'r']
for node in histories_dict:
history = histories_dict[node]
future = futures_dict[node]
predictions = prediction_dict[node]
if np.isnan(history[-1]).any():
continue
2020-01-13 19:55:45 +01:00
ax.plot(history[:, 0], history[:, 1], 'k--')
for sample_num in range(prediction_dict[node].shape[1]):
if kde and predictions.shape[1] >= 50:
line_alpha = 0.2
for t in range(predictions.shape[2]):
sns.kdeplot(predictions[batch_num, :, t, 0], predictions[batch_num, :, t, 1],
ax=ax, shade=True, shade_lowest=False,
color=np.random.choice(cmap), alpha=0.8)
ax.plot(predictions[batch_num, sample_num, :, 0], predictions[batch_num, sample_num, :, 1],
2020-01-13 19:55:45 +01:00
color=cmap[node.type.value],
linewidth=line_width, alpha=line_alpha)
ax.plot(future[:, 0],
future[:, 1],
2020-01-13 19:55:45 +01:00
'w--',
path_effects=[pe.Stroke(linewidth=edge_width, foreground='k'), pe.Normal()])
# Current Node Position
circle = plt.Circle((history[-1, 0],
history[-1, 1]),
2020-01-13 19:55:45 +01:00
node_circle_size,
facecolor='g',
edgecolor='k',
lw=circle_edge_width,
zorder=3)
ax.add_artist(circle)
ax.axis('equal')
2020-01-13 19:55:45 +01:00
def visualize_prediction(ax,
prediction_output_dict,
dt,
max_hl,
ph,
robot_node=None,
map=None,
**kwargs):
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(prediction_output_dict,
dt,
max_hl,
ph,
map=map)
assert(len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
if map is not None:
ax.imshow(map.as_image(), origin='lower', alpha=0.5)
plot_trajectories(ax, prediction_dict, histories_dict, futures_dict, *kwargs)
def visualize_distribution(ax,
prediction_distribution_dict,
map=None,
pi_threshold=0.05,
**kwargs):
if map is not None:
ax.imshow(map.as_image(), origin='lower', alpha=0.5)
for node, pred_dist in prediction_distribution_dict.items():
if pred_dist.mus.shape[:2] != (1, 1):
return
means = pred_dist.mus.squeeze().cpu().numpy()
covs = pred_dist.get_covariance_matrix().squeeze().cpu().numpy()
pis = pred_dist.pis_cat_dist.probs.squeeze().cpu().numpy()
for timestep in range(means.shape[0]):
for z_val in range(means.shape[1]):
mean = means[timestep, z_val]
covar = covs[timestep, z_val]
pi = pis[timestep, z_val]
if pi < pi_threshold:
continue
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = patches.Ellipse(mean, v[0], v[1], 180. + angle, color='blue' if node.type.name == 'VEHICLE' else 'orange')
ell.set_edgecolor(None)
ell.set_clip_box(ax.bbox)
ell.set_alpha(pi/10)
ax.add_artist(ell)