2020-04-06 03:43:49 +02:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--conf",
|
|
|
|
help="path to json config file for hyperparameters",
|
|
|
|
type=str,
|
2023-12-06 12:28:56 +01:00
|
|
|
default='./config/config.json')
|
2020-04-06 03:43:49 +02:00
|
|
|
|
|
|
|
parser.add_argument("--debug",
|
|
|
|
help="disable all disk writing processes.",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument("--preprocess_workers",
|
|
|
|
help="number of processes to spawn for preprocessing",
|
|
|
|
type=int,
|
|
|
|
default=0)
|
|
|
|
|
|
|
|
|
|
|
|
# Model Parameters
|
|
|
|
parser.add_argument("--offline_scene_graph",
|
|
|
|
help="whether to precompute the scene graphs offline, options are 'no' and 'yes'",
|
|
|
|
type=str,
|
|
|
|
default='yes')
|
|
|
|
|
|
|
|
parser.add_argument("--dynamic_edges",
|
|
|
|
help="whether to use dynamic edges or not, options are 'no' and 'yes'",
|
|
|
|
type=str,
|
|
|
|
default='yes')
|
|
|
|
|
|
|
|
parser.add_argument("--edge_state_combine_method",
|
|
|
|
help="the method to use for combining edges of the same type",
|
|
|
|
type=str,
|
|
|
|
default='sum')
|
|
|
|
|
|
|
|
parser.add_argument("--edge_influence_combine_method",
|
|
|
|
help="the method to use for combining edge influences",
|
|
|
|
type=str,
|
|
|
|
default='attention')
|
|
|
|
|
|
|
|
parser.add_argument('--edge_addition_filter',
|
|
|
|
nargs='+',
|
|
|
|
help="what scaling to use for edges as they're created",
|
|
|
|
type=float,
|
|
|
|
default=[0.25, 0.5, 0.75, 1.0]) # We don't automatically pad left with 0.0, if you want a sharp
|
|
|
|
# and short edge addition, then you need to have a 0.0 at the
|
|
|
|
# beginning, e.g. [0.0, 1.0].
|
|
|
|
|
|
|
|
parser.add_argument('--edge_removal_filter',
|
|
|
|
nargs='+',
|
|
|
|
help="what scaling to use for edges as they're removed",
|
|
|
|
type=float,
|
|
|
|
default=[1.0, 0.0]) # We don't automatically pad right with 0.0, if you want a sharp drop off like
|
|
|
|
# the default, then you need to have a 0.0 at the end.
|
|
|
|
|
|
|
|
parser.add_argument('--override_attention_radius',
|
|
|
|
action='append',
|
|
|
|
help='Specify one attention radius to override. E.g. "PEDESTRIAN VEHICLE 10.0"',
|
|
|
|
default=[])
|
|
|
|
|
|
|
|
parser.add_argument('--incl_robot_node',
|
|
|
|
help="whether to include a robot node in the graph or simply model all agents",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--map_encoding',
|
|
|
|
help="Whether to use map encoding or not",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--augment',
|
|
|
|
help="Whether to augment the scene during training",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--node_freq_mult_train',
|
|
|
|
help="Whether to use frequency multiplying of nodes during training",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--node_freq_mult_eval',
|
|
|
|
help="Whether to use frequency multiplying of nodes during evaluation",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--scene_freq_mult_train',
|
|
|
|
help="Whether to use frequency multiplying of nodes during training",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--scene_freq_mult_eval',
|
|
|
|
help="Whether to use frequency multiplying of nodes during evaluation",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--scene_freq_mult_viz',
|
|
|
|
help="Whether to use frequency multiplying of nodes during evaluation",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
parser.add_argument('--no_edge_encoding',
|
|
|
|
help="Whether to use neighbors edge encoding",
|
|
|
|
action='store_true')
|
|
|
|
|
|
|
|
# Data Parameters
|
|
|
|
parser.add_argument("--data_dir",
|
|
|
|
help="what dir to look in for data",
|
|
|
|
type=str,
|
2023-12-06 12:28:56 +01:00
|
|
|
default='./experiments/processed')
|
2020-04-06 03:43:49 +02:00
|
|
|
|
|
|
|
parser.add_argument("--train_data_dict",
|
|
|
|
help="what file to load for training data",
|
|
|
|
type=str,
|
|
|
|
default='train.pkl')
|
|
|
|
|
|
|
|
parser.add_argument("--eval_data_dict",
|
|
|
|
help="what file to load for evaluation data",
|
|
|
|
type=str,
|
|
|
|
default='val.pkl')
|
|
|
|
|
|
|
|
parser.add_argument("--log_dir",
|
|
|
|
help="what dir to save training information (i.e., saved models, logs, etc)",
|
|
|
|
type=str,
|
|
|
|
default='../experiments/logs')
|
|
|
|
|
|
|
|
parser.add_argument("--log_tag",
|
|
|
|
help="tag for the log folder",
|
|
|
|
type=str,
|
|
|
|
default='')
|
|
|
|
|
|
|
|
parser.add_argument('--device',
|
|
|
|
help='what device to perform training on',
|
|
|
|
type=str,
|
|
|
|
default='cuda:0')
|
|
|
|
|
|
|
|
parser.add_argument("--eval_device",
|
|
|
|
help="what device to use during evaluation",
|
|
|
|
type=str,
|
|
|
|
default=None)
|
|
|
|
|
|
|
|
# Training Parameters
|
|
|
|
parser.add_argument("--train_epochs",
|
|
|
|
help="number of iterations to train for",
|
|
|
|
type=int,
|
|
|
|
default=1)
|
|
|
|
|
|
|
|
parser.add_argument('--batch_size',
|
|
|
|
help='training batch size',
|
|
|
|
type=int,
|
|
|
|
default=256)
|
|
|
|
|
|
|
|
parser.add_argument('--eval_batch_size',
|
|
|
|
help='evaluation batch size',
|
|
|
|
type=int,
|
|
|
|
default=256)
|
|
|
|
|
|
|
|
parser.add_argument('--k_eval',
|
|
|
|
help='how many samples to take during evaluation',
|
|
|
|
type=int,
|
|
|
|
default=25)
|
|
|
|
|
|
|
|
parser.add_argument('--seed',
|
|
|
|
help='manual seed to use, default is 123',
|
|
|
|
type=int,
|
|
|
|
default=123)
|
|
|
|
|
|
|
|
parser.add_argument('--eval_every',
|
|
|
|
help='how often to evaluate during training, never if None',
|
|
|
|
type=int,
|
|
|
|
default=1)
|
|
|
|
|
|
|
|
parser.add_argument('--vis_every',
|
|
|
|
help='how often to visualize during training, never if None',
|
|
|
|
type=int,
|
2024-12-13 10:38:12 +01:00
|
|
|
default=None)
|
2020-04-06 03:43:49 +02:00
|
|
|
|
|
|
|
parser.add_argument('--save_every',
|
|
|
|
help='how often to save during training, never if None',
|
|
|
|
type=int,
|
|
|
|
default=1)
|
|
|
|
args = parser.parse_args()
|