Trajectron-plus-plus/experiments/pedestrians/process_data.py

171 lines
6.1 KiB
Python
Raw Permalink Normal View History

import sys
import os
import numpy as np
import pandas as pd
import dill
sys.path.append("../../")
from trajectron.environment import Environment, Scene, Node
from trajectron.utils import maybe_makedirs
from trajectron.environment import derivative_of
desired_max_time = 100
pred_indices = [2, 3]
state_dim = 6
frame_diff = 10
desired_frame_diff = 1
dt = 0.4
standardization = {
'PEDESTRIAN': {
'position': {
'x': {'mean': 0, 'std': 1},
'y': {'mean': 0, 'std': 1}
},
'velocity': {
'x': {'mean': 0, 'std': 2},
'y': {'mean': 0, 'std': 2}
},
'acceleration': {
'x': {'mean': 0, 'std': 1},
'y': {'mean': 0, 'std': 1}
}
}
}
def augment_scene(scene, angle):
def rotate_pc(pc, alpha):
M = np.array([[np.cos(alpha), -np.sin(alpha)],
[np.sin(alpha), np.cos(alpha)]])
return M @ pc
data_columns = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration'], ['x', 'y']])
scene_aug = Scene(timesteps=scene.timesteps, dt=scene.dt, name=scene.name)
alpha = angle * np.pi / 180
for node in scene.nodes:
x = node.data.position.x.copy()
y = node.data.position.y.copy()
x, y = rotate_pc(np.array([x, y]), alpha)
vx = derivative_of(x, scene.dt)
vy = derivative_of(y, scene.dt)
ax = derivative_of(vx, scene.dt)
ay = derivative_of(vy, scene.dt)
data_dict = {('position', 'x'): x,
('position', 'y'): y,
('velocity', 'x'): vx,
('velocity', 'y'): vy,
('acceleration', 'x'): ax,
('acceleration', 'y'): ay}
node_data = pd.DataFrame(data_dict, columns=data_columns)
node = Node(node_type=node.type, node_id=node.id, data=node_data, first_timestep=node.first_timestep)
scene_aug.nodes.append(node)
return scene_aug
def augment(scene):
scene_aug = np.random.choice(scene.augmented)
scene_aug.temporal_scene_graph = scene.temporal_scene_graph
return scene_aug
nl = 0
l = 0
maybe_makedirs('../processed')
data_columns = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration'], ['x', 'y']])
for desired_source in ['eth', 'hotel', 'univ', 'zara1', 'zara2']:
for data_class in ['train', 'val', 'test']:
env = Environment(node_type_list=['PEDESTRIAN'], standardization=standardization)
attention_radius = dict()
attention_radius[(env.NodeType.PEDESTRIAN, env.NodeType.PEDESTRIAN)] = 3.0
env.attention_radius = attention_radius
scenes = []
data_dict_path = os.path.join('../processed', '_'.join([desired_source, data_class]) + '.pkl')
for subdir, dirs, files in os.walk(os.path.join('raw', desired_source, data_class)):
for file in files:
if file.endswith('.txt'):
input_data_dict = dict()
full_data_path = os.path.join(subdir, file)
print('At', full_data_path)
data = pd.read_csv(full_data_path, sep='\t', index_col=False, header=None)
data.columns = ['frame_id', 'track_id', 'pos_x', 'pos_y']
data['frame_id'] = pd.to_numeric(data['frame_id'], downcast='integer')
data['track_id'] = pd.to_numeric(data['track_id'], downcast='integer')
data['frame_id'] = data['frame_id'] // 10
data['frame_id'] -= data['frame_id'].min()
data['node_type'] = 'PEDESTRIAN'
data['node_id'] = data['track_id'].astype(str)
data.sort_values('frame_id', inplace=True)
# Mean Position
data['pos_x'] = data['pos_x'] - data['pos_x'].mean()
data['pos_y'] = data['pos_y'] - data['pos_y'].mean()
max_timesteps = data['frame_id'].max()
scene = Scene(timesteps=max_timesteps+1, dt=dt, name=desired_source + "_" + data_class, aug_func=augment if data_class == 'train' else None)
for node_id in pd.unique(data['node_id']):
node_df = data[data['node_id'] == node_id]
assert np.all(np.diff(node_df['frame_id']) == 1)
node_values = node_df[['pos_x', 'pos_y']].values
if node_values.shape[0] < 2:
continue
new_first_idx = node_df['frame_id'].iloc[0]
x = node_values[:, 0]
y = node_values[:, 1]
vx = derivative_of(x, scene.dt)
vy = derivative_of(y, scene.dt)
ax = derivative_of(vx, scene.dt)
ay = derivative_of(vy, scene.dt)
data_dict = {('position', 'x'): x,
('position', 'y'): y,
('velocity', 'x'): vx,
('velocity', 'y'): vy,
('acceleration', 'x'): ax,
('acceleration', 'y'): ay}
node_data = pd.DataFrame(data_dict, columns=data_columns)
node = Node(node_type=env.NodeType.PEDESTRIAN, node_id=node_id, data=node_data)
node.first_timestep = new_first_idx
scene.nodes.append(node)
if data_class == 'train':
scene.augmented = list()
angles = np.arange(0, 360, 15) if data_class == 'train' else [0]
for angle in angles:
scene.augmented.append(augment_scene(scene, angle))
print(scene)
scenes.append(scene)
print(f'Processed {len(scenes):.2f} scene for data class {data_class}')
env.scenes = scenes
if len(scenes) > 0:
with open(data_dict_path, 'wb') as f:
dill.dump(env, f, protocol=dill.HIGHEST_PROTOCOL)
print(f"Linear: {l}")
print(f"Non-Linear: {nl}")