Trajectron-plus-plus/experiments/nuScenes/helper.py

286 lines
12 KiB
Python
Raw Permalink Normal View History

2020-01-13 18:55:45 +00:00
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.patheffects as pe
from scipy.ndimage import rotate
import seaborn as sns
from model.model_registrar import ModelRegistrar
from model import Trajectron
2020-01-13 18:55:45 +00:00
from utils import prediction_output_to_trajectories
from scipy.integrate import cumtrapz
line_colors = ['#375397', '#F05F78', '#80CBE5', '#ABCB51', '#C8B0B0']
2020-01-13 18:55:45 +00:00
cars = [plt.imread('icons/Car TOP_VIEW 375397.png'),
plt.imread('icons/Car TOP_VIEW F05F78.png'),
plt.imread('icons/Car TOP_VIEW 80CBE5.png'),
plt.imread('icons/Car TOP_VIEW ABCB51.png'),
plt.imread('icons/Car TOP_VIEW C8B0B0.png')]
2020-01-13 18:55:45 +00:00
robot = plt.imread('icons/Car TOP_VIEW ROBOT.png')
2020-01-13 18:55:45 +00:00
def load_model(model_dir, env, ts=3999):
model_registrar = ModelRegistrar(model_dir, 'cpu')
model_registrar.load_models(ts)
with open(os.path.join(model_dir, 'config.json'), 'r') as config_json:
hyperparams = json.load(config_json)
hyperparams['map_enc_dropout'] = 0.0
if 'incl_robot_node' not in hyperparams:
hyperparams['incl_robot_node'] = False
stg = Trajectron(model_registrar, hyperparams, None, 'cpu')
2020-01-13 18:55:45 +00:00
stg.set_environment(env)
2020-01-13 18:55:45 +00:00
stg.set_annealing_params()
return stg, hyperparams
def plot_vehicle_nice(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
dt,
max_hl,
ph,
map=map)
assert (len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
if map is not None:
ax.imshow(map.fdata, origin='lower', alpha=0.5)
cmap = ['k', 'b', 'y', 'g', 'r']
line_alpha = 0.7
line_width = 0.2
edge_width = 2
circle_edge_width = 0.5
node_circle_size = 0.3
a = []
i = 0
node_list = sorted(histories_dict.keys(), key=lambda x: x.id)
2020-01-13 18:55:45 +00:00
for node in node_list:
history = histories_dict[node] + np.array([x_min, y_min])
future = futures_dict[node] + np.array([x_min, y_min])
predictions = prediction_dict[node] + np.array([x_min, y_min])
if node.type.name == 'VEHICLE':
# ax.plot(history[:, 0], history[:, 1], 'ko-', linewidth=1)
ax.plot(future[:, 0],
future[:, 1],
'w--o',
linewidth=4,
markersize=3,
zorder=650,
path_effects=[pe.Stroke(linewidth=5, foreground='k'), pe.Normal()])
for t in range(predictions.shape[2]):
sns.kdeplot(predictions[0, :, t, 0], predictions[0, :, t, 1],
2020-01-13 18:55:45 +00:00
ax=ax, shade=True, shade_lowest=False,
color=line_colors[i % len(line_colors)], zorder=600, alpha=0.8)
vel = node.get(np.array([ts_key]), {'velocity': ['x', 'y']})
2020-01-13 18:55:45 +00:00
h = np.arctan2(vel[0, 1], vel[0, 0])
r_img = rotate(cars[i % len(cars)], node.get(np.array([ts_key]), {'heading': ['°']})[0, 0] * 180 / np.pi,
2020-01-13 18:55:45 +00:00
reshape=True)
oi = OffsetImage(r_img, zoom=0.025, zorder=700)
2020-01-13 18:55:45 +00:00
veh_box = AnnotationBbox(oi, (history[-1, 0], history[-1, 1]), frameon=False)
veh_box.zorder = 700
ax.add_artist(veh_box)
i += 1
else:
# ax.plot(history[:, 0], history[:, 1], 'k--')
for t in range(predictions.shape[2]):
sns.kdeplot(predictions[0, :, t, 0], predictions[0, :, t, 1],
2020-01-13 18:55:45 +00:00
ax=ax, shade=True, shade_lowest=False,
color='b', zorder=600, alpha=0.8)
ax.plot(future[:, 0],
future[:, 1],
'w--',
zorder=650,
path_effects=[pe.Stroke(linewidth=edge_width, foreground='k'), pe.Normal()])
# Current Node Position
circle = plt.Circle((history[-1, 0],
history[-1, 1]),
node_circle_size,
facecolor='g',
edgecolor='k',
lw=circle_edge_width,
zorder=3)
ax.add_artist(circle)
def plot_vehicle_mm(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
dt,
max_hl,
ph,
map=map)
assert (len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
if map is not None:
ax.imshow(map.fdata, origin='lower', alpha=0.5)
cmap = ['k', 'b', 'y', 'g', 'r']
line_alpha = 0.7
line_width = 0.2
edge_width = 2
circle_edge_width = 0.5
node_circle_size = 0.5
a = []
i = 0
node_list = sorted(histories_dict.keys(), key=lambda x: x.id)
2020-01-13 18:55:45 +00:00
for node in node_list:
history = histories_dict[node] + np.array([x_min, y_min])
future = futures_dict[node] + np.array([x_min, y_min])
predictions = prediction_dict[node] + np.array([x_min, y_min])
if node.type.name == 'VEHICLE':
for sample_num in range(prediction_dict[node].shape[1]):
ax.plot(predictions[:, sample_num, :, 0], predictions[:, sample_num, :, 1], 'ko-',
2020-01-13 18:55:45 +00:00
zorder=620,
markersize=5,
linewidth=3, alpha=0.7)
else:
for sample_num in range(prediction_dict[node].shape[1]):
ax.plot(predictions[:, sample_num, :, 0], predictions[:, sample_num, :, 1], 'ko-',
2020-01-13 18:55:45 +00:00
zorder=620,
markersize=2,
linewidth=1, alpha=0.7)
def plot_vehicle_nice_mv(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
dt,
max_hl,
ph,
map=map)
assert (len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
if map is not None:
ax.imshow(map.fdata, origin='lower', alpha=0.5)
cmap = ['k', 'b', 'y', 'g', 'r']
line_alpha = 0.7
line_width = 0.2
edge_width = 2
circle_edge_width = 0.5
node_circle_size = 0.3
a = []
i = 0
node_list = sorted(histories_dict.keys(), key=lambda x: x.id)
2020-01-13 18:55:45 +00:00
for node in node_list:
h = node.get(np.array([ts_key]), {'heading': ['°']})[0, 0]
2020-01-13 18:55:45 +00:00
history_org = histories_dict[node] + np.array([x_min, y_min])
history = histories_dict[node] + np.array([x_min, y_min]) + 5 * np.array([np.cos(h), np.sin(h)])
future = futures_dict[node] + np.array([x_min, y_min]) + 5 * np.array([np.cos(h), np.sin(h)])
predictions = prediction_dict[node] + np.array([x_min, y_min]) + 5 * np.array([np.cos(h), np.sin(h)])
2020-01-13 18:55:45 +00:00
if node.type.name == 'VEHICLE':
for t in range(predictions.shape[2]):
sns.kdeplot(predictions[0, :, t, 0], predictions[0, :, t, 1],
2020-01-13 18:55:45 +00:00
ax=ax, shade=True, shade_lowest=False,
color=line_colors[i % len(line_colors)], zorder=600, alpha=1.0)
r_img = rotate(cars[i % len(cars)], node.get(np.array([ts_key]), {'heading': ['°']})[0, 0] * 180 / np.pi,
2020-01-13 18:55:45 +00:00
reshape=True)
oi = OffsetImage(r_img, zoom=0.08, zorder=700)
veh_box = AnnotationBbox(oi, (history_org[-1, 0], history_org[-1, 1]), frameon=False)
veh_box.zorder = 700
ax.add_artist(veh_box)
i += 1
else:
for t in range(predictions.shape[2]):
2020-01-13 18:55:45 +00:00
sns.kdeplot(predictions[:, t, 0], predictions[:, t, 1],
ax=ax, shade=True, shade_lowest=False,
color='b', zorder=600, alpha=0.8)
# Current Node Position
circle = plt.Circle((history[-1, 0],
history[-1, 1]),
node_circle_size,
facecolor='g',
edgecolor='k',
lw=circle_edge_width,
zorder=3)
ax.add_artist(circle)
def plot_vehicle_nice_mv_robot(ax, predictions, dt, max_hl=10, ph=6, map=None, x_min=0, y_min=0):
prediction_dict, histories_dict, futures_dict = prediction_output_to_trajectories(predictions,
dt,
max_hl,
ph,
map=map)
assert (len(prediction_dict.keys()) <= 1)
if len(prediction_dict.keys()) == 0:
return
ts_key = list(prediction_dict.keys())[0]
prediction_dict = prediction_dict[ts_key]
histories_dict = histories_dict[ts_key]
futures_dict = futures_dict[ts_key]
if map is not None:
ax.imshow(map.fdata, origin='lower', alpha=0.5)
cmap = ['k', 'b', 'y', 'g', 'r']
line_alpha = 0.7
line_width = 0.2
edge_width = 2
circle_edge_width = 0.5
node_circle_size = 0.3
node_list = sorted(histories_dict.keys(), key=lambda x: x.id)
2020-01-13 18:55:45 +00:00
for node in node_list:
h = node.get(np.array([ts_key]), {'heading': ['°']})[0, 0]
history_org = histories_dict[node] + np.array([x_min, y_min]) + 5 / 2 * np.array(
2020-01-13 18:55:45 +00:00
[np.cos(h), np.sin(h)])
future = futures_dict[node] + np.array([x_min, y_min]) + 5 * np.array([np.cos(h), np.sin(h)])
2020-01-13 18:55:45 +00:00
ax.plot(future[:, 0],
future[:, 1],
'--o',
c='#F05F78',
linewidth=4,
markersize=3,
zorder=650,
path_effects=[pe.Stroke(linewidth=5, foreground='k'), pe.Normal()])
r_img = rotate(robot, node.get(np.array([ts_key]), {'heading': ['°']})[0, 0] * 180 / np.pi, reshape=True)
2020-01-13 18:55:45 +00:00
oi = OffsetImage(r_img, zoom=0.08, zorder=700)
veh_box = AnnotationBbox(oi, (history_org[-1, 0], history_org[-1, 1]), frameon=False)
veh_box.zorder = 700
ax.add_artist(veh_box)
def integrate(f, dx, F0=0.):
N = f.shape[0]
return F0 + np.hstack((np.zeros((N, 1)), cumtrapz(f, axis=1, dx=dx)))