335 lines
12 KiB
Python
335 lines
12 KiB
Python
import numpy as np
|
|
from numba import jit
|
|
from collections import deque
|
|
import itertools
|
|
import os
|
|
import os.path as osp
|
|
import time
|
|
import torch
|
|
|
|
from utils.utils import *
|
|
from utils.log import logger
|
|
from utils.kalman_filter import KalmanFilter
|
|
from models import *
|
|
from tracker import matching
|
|
from .basetrack import BaseTrack, TrackState
|
|
|
|
|
|
class STrack(BaseTrack):
|
|
|
|
def __init__(self, tlwh, score, temp_feat, buffer_size=30):
|
|
|
|
# wait activate
|
|
self._tlwh = np.asarray(tlwh, dtype=np.float)
|
|
self.kalman_filter = None
|
|
self.mean, self.covariance = None, None
|
|
self.is_activated = False
|
|
|
|
self.score = score
|
|
self.tracklet_len = 0
|
|
|
|
self.smooth_feat = None
|
|
self.update_features(temp_feat)
|
|
self.features = deque([], maxlen=buffer_size)
|
|
self.alpha = 0.9
|
|
|
|
def update_features(self, feat):
|
|
self.curr_feat = feat
|
|
if self.smooth_feat is None:
|
|
self.smooth_feat = feat
|
|
else:
|
|
self.smooth_feat = self.alpha *self.smooth_feat + (1-self.alpha) * feat
|
|
self.features.append(feat)
|
|
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
|
|
|
|
def predict(self):
|
|
mean_state = self.mean.copy()
|
|
if self.state != TrackState.Tracked:
|
|
mean_state[7] = 0
|
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
|
|
|
|
|
def activate(self, kalman_filter, frame_id):
|
|
"""Start a new tracklet"""
|
|
self.kalman_filter = kalman_filter
|
|
self.track_id = self.next_id()
|
|
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
|
|
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
#self.is_activated = True
|
|
self.frame_id = frame_id
|
|
self.start_frame = frame_id
|
|
|
|
def re_activate(self, new_track, frame_id, new_id=False):
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
|
|
)
|
|
|
|
self.update_features(new_track.curr_feat)
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
self.frame_id = frame_id
|
|
if new_id:
|
|
self.track_id = self.next_id()
|
|
|
|
def update(self, new_track, frame_id, update_feature=True):
|
|
"""
|
|
Update a matched track
|
|
:type new_track: STrack
|
|
:type frame_id: int
|
|
:type update_feature: bool
|
|
:return:
|
|
"""
|
|
self.frame_id = frame_id
|
|
self.tracklet_len += 1
|
|
|
|
new_tlwh = new_track.tlwh
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
|
|
self.score = new_track.score
|
|
if update_feature:
|
|
self.update_features(new_track.curr_feat)
|
|
|
|
@property
|
|
@jit
|
|
def tlwh(self):
|
|
"""Get current position in bounding box format `(top left x, top left y,
|
|
width, height)`.
|
|
"""
|
|
if self.mean is None:
|
|
return self._tlwh.copy()
|
|
ret = self.mean[:4].copy()
|
|
ret[2] *= ret[3]
|
|
ret[:2] -= ret[2:] / 2
|
|
return ret
|
|
|
|
@property
|
|
@jit
|
|
def tlbr(self):
|
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|
`(top left, bottom right)`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
@jit
|
|
def tlwh_to_xyah(tlwh):
|
|
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
|
height)`, where the aspect ratio is `width / height`.
|
|
"""
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[:2] += ret[2:] / 2
|
|
ret[2] /= ret[3]
|
|
return ret
|
|
|
|
def to_xyah(self):
|
|
return self.tlwh_to_xyah(self.tlwh)
|
|
|
|
@staticmethod
|
|
@jit
|
|
def tlbr_to_tlwh(tlbr):
|
|
ret = np.asarray(tlbr).copy()
|
|
ret[2:] -= ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
@jit
|
|
def tlwh_to_tlbr(tlwh):
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
def __repr__(self):
|
|
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
|
|
|
|
|
|
class JDETracker(object):
|
|
def __init__(self, opt, frame_rate=30):
|
|
self.opt = opt
|
|
self.model = Darknet(opt.cfg, opt.img_size, nID=14455)
|
|
# load_darknet_weights(self.model, opt.weights)
|
|
self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'], strict=False)
|
|
self.model.cuda().eval()
|
|
|
|
self.tracked_stracks = [] # type: list[STrack]
|
|
self.lost_stracks = [] # type: list[STrack]
|
|
self.removed_stracks = [] # type: list[STrack]
|
|
|
|
self.frame_id = 0
|
|
self.det_thresh = opt.conf_thres
|
|
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
|
|
self.max_time_lost = self.buffer_size
|
|
|
|
self.kalman_filter = KalmanFilter()
|
|
|
|
def update(self, im_blob, img0):
|
|
self.frame_id += 1
|
|
activated_starcks = []
|
|
refind_stracks = []
|
|
lost_stracks = []
|
|
removed_stracks = []
|
|
|
|
t1 = time.time()
|
|
''' Step 1: Network forward, get detections & embeddings'''
|
|
with torch.no_grad():
|
|
pred = self.model(im_blob)
|
|
pred = pred[pred[:, :, 4] > self.opt.conf_thres]
|
|
if len(pred) > 0:
|
|
dets = non_max_suppression(pred.unsqueeze(0), self.opt.conf_thres, self.opt.nms_thres)[0].cpu()
|
|
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
|
|
'''Detections'''
|
|
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f.numpy(), 30) for
|
|
(tlbrs, f) in zip(dets[:, :5], dets[:, -self.model.emb_dim:])]
|
|
else:
|
|
detections = []
|
|
|
|
t2 = time.time()
|
|
# print('Forward: {} s'.format(t2-t1))
|
|
|
|
''' Add newly detected tracklets to tracked_stracks'''
|
|
unconfirmed = []
|
|
tracked_stracks = [] # type: list[STrack]
|
|
for track in self.tracked_stracks:
|
|
if not track.is_activated:
|
|
unconfirmed.append(track)
|
|
else:
|
|
tracked_stracks.append(track)
|
|
|
|
''' Step 2: First association, with embedding'''
|
|
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
|
|
# Predict the current location with KF
|
|
for strack in strack_pool:
|
|
strack.predict()
|
|
|
|
dists = matching.embedding_distance(strack_pool, detections)
|
|
dists = matching.gate_cost_matrix(self.kalman_filter, dists, strack_pool, detections)
|
|
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)
|
|
|
|
for itracked, idet in matches:
|
|
track = strack_pool[itracked]
|
|
det = detections[idet]
|
|
if track.state == TrackState.Tracked:
|
|
track.update(detections[idet], self.frame_id)
|
|
activated_starcks.append(track)
|
|
else:
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|
refind_stracks.append(track)
|
|
|
|
''' Step 3: Second association, with IOU'''
|
|
detections = [detections[i] for i in u_detection]
|
|
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state==TrackState.Tracked ]
|
|
dists = matching.iou_distance(r_tracked_stracks, detections)
|
|
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
|
|
|
|
for itracked, idet in matches:
|
|
track = r_tracked_stracks[itracked]
|
|
det = detections[idet]
|
|
if track.state == TrackState.Tracked:
|
|
track.update(det, self.frame_id)
|
|
activated_starcks.append(track)
|
|
else:
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|
refind_stracks.append(track)
|
|
|
|
for it in u_track:
|
|
track = r_tracked_stracks[it]
|
|
if not track.state == TrackState.Lost:
|
|
track.mark_lost()
|
|
lost_stracks.append(track)
|
|
|
|
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
|
|
detections = [detections[i] for i in u_detection]
|
|
dists = matching.iou_distance(unconfirmed, detections)
|
|
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
|
|
for itracked, idet in matches:
|
|
unconfirmed[itracked].update(detections[idet], self.frame_id)
|
|
activated_starcks.append(unconfirmed[itracked])
|
|
for it in u_unconfirmed:
|
|
track = unconfirmed[it]
|
|
track.mark_removed()
|
|
removed_stracks.append(track)
|
|
|
|
""" Step 4: Init new stracks"""
|
|
for inew in u_detection:
|
|
track = detections[inew]
|
|
if track.score < self.det_thresh:
|
|
continue
|
|
track.activate(self.kalman_filter, self.frame_id)
|
|
activated_starcks.append(track)
|
|
|
|
""" Step 5: Update state"""
|
|
for track in self.lost_stracks:
|
|
if self.frame_id - track.end_frame > self.max_time_lost:
|
|
track.mark_removed()
|
|
removed_stracks.append(track)
|
|
t4 = time.time()
|
|
# print('Ramained match {} s'.format(t4-t3))
|
|
|
|
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
|
|
# self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack]
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
|
|
self.lost_stracks.extend(lost_stracks)
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
|
|
self.removed_stracks.extend(removed_stracks)
|
|
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
|
|
|
|
# get scores of lost tracks
|
|
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
|
|
|
|
logger.debug('===========Frame {}=========='.format(self.frame_id))
|
|
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
|
|
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
|
|
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
|
|
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
|
|
t5 = time.time()
|
|
# print('Final {} s'.format(t5-t4))
|
|
return output_stracks
|
|
|
|
def joint_stracks(tlista, tlistb):
|
|
exists = {}
|
|
res = []
|
|
for t in tlista:
|
|
exists[t.track_id] = 1
|
|
res.append(t)
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if not exists.get(tid, 0):
|
|
exists[tid] = 1
|
|
res.append(t)
|
|
return res
|
|
|
|
def sub_stracks(tlista, tlistb):
|
|
stracks = {}
|
|
for t in tlista:
|
|
stracks[t.track_id] = t
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if stracks.get(tid, 0):
|
|
del stracks[tid]
|
|
return list(stracks.values())
|
|
|
|
def remove_duplicate_stracks(stracksa, stracksb):
|
|
pdist = matching.iou_distance(stracksa, stracksb)
|
|
pairs = np.where(pdist<0.15)
|
|
dupa, dupb = list(), list()
|
|
for p,q in zip(*pairs):
|
|
timep = stracksa[p].frame_id - stracksa[p].start_frame
|
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame
|
|
if timep > timeq:
|
|
dupb.append(q)
|
|
else:
|
|
dupa.append(p)
|
|
resa = [t for i,t in enumerate(stracksa) if not i in dupa]
|
|
resb = [t for i,t in enumerate(stracksb) if not i in dupb]
|
|
return resa, resb
|
|
|
|
|