# vim: expandtab:ts=4:sw=4 import numba import numpy as np import scipy.linalg """ Table for the 0.95 quantile of the chi-square distribution with N degrees of freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv function and used as Mahalanobis gating threshold. """ chi2inv95 = { 1: 3.8415, 2: 5.9915, 3: 7.8147, 4: 9.4877, 5: 11.070, 6: 12.592, 7: 14.067, 8: 15.507, 9: 16.919} class KalmanFilter(object): """ A simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space x, y, a, h, vx, vy, va, vh contains the bounding box center position (x, y), aspect ratio a, height h, and their respective velocities. Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct observation of the state space (linear observation model). """ def __init__(self): ndim, dt = 4, 1. # Create Kalman filter model matrices. self._motion_mat = np.eye(2 * ndim, 2 * ndim) for i in range(ndim): self._motion_mat[i, ndim + i] = dt self._update_mat = np.eye(ndim, 2 * ndim) # Motion and observation uncertainty are chosen relative to the current # state estimate. These weights control the amount of uncertainty in # the model. This is a bit hacky. self._std_weight_position = 1. / 20 self._std_weight_velocity = 1. / 160 def initiate(self, measurement): """Create track from unassociated measurement. Parameters ---------- measurement : ndarray Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. Returns ------- (ndarray, ndarray) Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2, 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3], 10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3]] covariance = np.diag(np.square(std)) return mean, covariance def predict(self, mean, covariance): """Run Kalman filter prediction step. Parameters ---------- mean : ndarray The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns ------- (ndarray, ndarray) Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2, self._std_weight_position * mean[3]] std_vel = [ self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5, self._std_weight_velocity * mean[3]] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) mean = np.dot(mean, self._motion_mat.T) covariance = np.linalg.multi_dot(( self._motion_mat, covariance, self._motion_mat.T)) + motion_cov return mean, covariance def project(self, mean, covariance): """Project state distribution to measurement space. Parameters ---------- mean : ndarray The state's mean vector (8 dimensional array). covariance : ndarray The state's covariance matrix (8x8 dimensional). Returns ------- (ndarray, ndarray) Returns the projected mean and covariance matrix of the given state estimate. """ std = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1, self._std_weight_position * mean[3]] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot(( self._update_mat, covariance, self._update_mat.T)) return mean, covariance + innovation_cov def multi_predict(self, mean, covariance): """Run Kalman filter prediction step (Vectorized version). Parameters ---------- mean : ndarray The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns ------- (ndarray, ndarray) Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3], 1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3]] std_vel = [ self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3], 1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3]] sqr = np.square(np.r_[std_pos, std_vel]).T motion_cov = [] for i in range(len(mean)): motion_cov.append(np.diag(sqr[i])) motion_cov = np.asarray(motion_cov) mean = np.dot(mean, self._motion_mat.T) left = np.dot(self._motion_mat, covariance).transpose((1,0,2)) covariance = np.dot(left, self._motion_mat.T) + motion_cov return mean, covariance def update(self, mean, covariance, measurement): """Run Kalman filter correction step. Parameters ---------- mean : ndarray The predicted state's mean vector (8 dimensional). covariance : ndarray The state's covariance matrix (8x8 dimensional). measurement : ndarray The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. Returns ------- (ndarray, ndarray) Returns the measurement-corrected state distribution. """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False).T innovation = measurement - projected_mean new_mean = mean + np.dot(innovation, kalman_gain.T) new_covariance = covariance - np.linalg.multi_dot(( kalman_gain, projected_cov, kalman_gain.T)) return new_mean, new_covariance def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'): """Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Parameters ---------- mean : ndarray Mean vector over the state distribution (8 dimensional). covariance : ndarray Covariance of the state distribution (8x8 dimensional). measurements : ndarray An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool] If True, distance computation is done with respect to the bounding box center position only. Returns ------- ndarray Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`. """ mean, covariance = self.project(mean, covariance) if only_position: mean, covariance = mean[:2], covariance[:2, :2] measurements = measurements[:, :2] d = measurements - mean if metric == 'gaussian': return np.sum(d * d, axis=1) elif metric == 'maha': cholesky_factor = np.linalg.cholesky(covariance) z = scipy.linalg.solve_triangular( cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True) squared_maha = np.sum(z * z, axis=0) return squared_maha else: raise ValueError('invalid distance metric')