diff --git a/models.py b/models.py index ffb622f..d783860 100644 --- a/models.py +++ b/models.py @@ -185,7 +185,7 @@ class YOLOLayer(nn.Module): #loss = torch.exp(-self.s_r)*lbox + torch.exp(-self.s_c)*lconf + torch.exp(-self.s_id)*lid + \ # (self.s_r + self.s_c + self.s_id) #loss *= 0.5 - loss = 1*lbox + 1*lconf + 1*lid + loss = 0*lbox + 0*lconf + 1*lid return loss, loss.item(), lbox.item(), lconf.item(), lid.item(), nT diff --git a/test.py b/test.py index e8f9d0c..409a8ab 100644 --- a/test.py +++ b/test.py @@ -55,7 +55,6 @@ def test( outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class, jdict = \ [], [], [], [], [], [], [], [], [] AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC) - coco91class = coco80_to_coco91_class() for batch_i, (imgs, targets, paths, shapes, targets_len) in enumerate(dataloader): t = time.time() output = model(imgs.cuda())