This commit is contained in:
Zhongdao 2020-01-10 19:38:39 +08:00
commit 7216bcaadf
3 changed files with 12 additions and 23 deletions

View file

@ -1,9 +1,9 @@
# Dataset Zoo
We provide several relevant datasets for training and evaluating the Joint Detection and Embedding (JDE) model.
Annotations are provided in a unified format. If you want to use these datasets, please **follow their licenses**,
and if you use these datasets in your research, please cite the original work (you can find the bibtex in the bottom).
and if you use these datasets in your research, please cite the original work (you can find the BibTeX in the bottom).
## Data Format
All the dataset has the following structrue:
All the dataset has the following structure:
```
Caltech
|——————images
@ -15,14 +15,14 @@ Caltech
|—————— ...
└——————0000N.txt
```
Every image corresponds to an annation text. Given an image path,
Every image corresponds to an annotation text. Given an image path,
the annotation text path can be easily generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`.
In the annotation text, each line is a bounding box and has the following format,
```
[class] [identity] [x_center] [y_center] [width] [height]
```
The field `[class]` is not used in this project since we only care about a single class, i.e., pedestrian here.
The field `[class]` should be `0`. Only single-class multi-object tracking is supported in this version.
The field `[identity]` is an integer from `0` to `num_identities - 1`, or `-1` if this box has no identity annotation.

View file

@ -10,12 +10,14 @@ We hope this repo will help researches/engineers to develop more practical MOT s
## Requirements
* Python 3.6
* [Pytorch](https://pytorch.org) >= 1.0.1
* [syncbn](https://github.com/ytoon/Synchronized-BatchNorm-PyTorch) (Optional, compile and place it under utils/syncbn, or simply replace with nn.BatchNorm [here](https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/models.py#L12))
* [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) (Their GPU NMS is used in this project)
* [Pytorch](https://pytorch.org) >= 1.2.0
* python-opencv
* ffmpeg (Optional, used in the video demo)
* [py-motmetrics](https://github.com/cheind/py-motmetrics) (Simply `pip install motmetrics`)
* [py-motmetrics](https://github.com/cheind/py-motmetrics) (`pip install motmetrics`)
* cython-bbox (`pip install cython_bbox`)
* (Optional) ffmpeg (used in the video demo)
* (Optional) [syncbn](https://github.com/ytoon/Synchronized-BatchNorm-PyTorch) (compile and place it under utils/syncbn, or simply replace with nn.BatchNorm [here](https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/models.py#L12))
* ~~[maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) (Their GPU NMS is used in this project)~~
## Video Demo
<img src="assets/MOT16-03.gif" width="400"/> <img src="assets/MOT16-14.gif" width="400"/>

View file

@ -414,13 +414,6 @@ def pooling_nms(heatmap, kernel=1):
keep = (hmax == heatmap).float()
return keep * heatmap
def soft_nms(dets, sigma=0.5, Nt=0.3, threshold=0.05, method=1):
keep = cpu_soft_nms(np.ascontiguousarray(dets, dtype=np.float32),
np.float32(sigma), np.float32(Nt),
np.float32(threshold),
np.uint8(method))
return keep
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='standard'):
"""
Removes detections with lower object confidence score than 'conf_thres'
@ -431,7 +424,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='stand
prediction,
conf_thres,
nms_thres,
method = 'standard', 'fast', 'soft_linear' or 'soft_gaussian'
method = 'standard' or 'fast'
"""
output = [None for _ in range(len(prediction))]
@ -457,12 +450,6 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method='stand
# Non-maximum suppression
if method == 'standard':
nms_indices = nms(pred[:, :4], pred[:, 4], nms_thres)
elif method == 'soft_linear':
dets = pred[:, :5].clone().contiguous().data.cpu().numpy()
nms_indices = soft_nms(dets, Nt=nms_thres, method=0)
elif method == 'soft_gaussian':
dets = pred[:, :5].clone().contiguous().data.cpu().numpy()
nms_indices = soft_nms(dets, Nt=nms_thres, method=1)
elif method == 'fast':
nms_indices = fast_nms(pred[:, :4], pred[:, 4], iou_thres=nms_thres, conf_thres=conf_thres)
else: