parent
a23837c39c
commit
2eff9c00b1
1 changed files with 34 additions and 24 deletions
|
@ -10,11 +10,10 @@ import numpy as np
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torchvision.ops import nms
|
||||
#import maskrcnn_benchmark.layers.nms as nms
|
||||
|
||||
def mkdir_if_missing(d):
|
||||
if not osp.exists(d):
|
||||
os.makedirs(d)
|
||||
|
||||
def mkdir_if_missing(dir):
|
||||
os.makedirs(dir, exist_ok=True)
|
||||
|
||||
|
||||
def float3(x): # format floats to 3 decimals
|
||||
|
@ -38,7 +37,10 @@ def load_classes(path):
|
|||
return list(filter(None, names)) # filter removes empty strings (such as last line)
|
||||
|
||||
|
||||
def model_info(model): # Plots a line-by-line description of a PyTorch model
|
||||
def model_info(model):
|
||||
"""
|
||||
Prints out a line-by-line description of a PyTorch model ending with a summary.
|
||||
"""
|
||||
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||
print('\n%5s %50s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||
|
@ -50,7 +52,10 @@ def model_info(model): # Plots a line-by-line description of a PyTorch model
|
|||
|
||||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
||||
"""
|
||||
Plots one bounding box on image img.
|
||||
"""
|
||||
tl = line_thickness or round(0.0004 * max(img.shape[0:2])) + 1 # line thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||
|
@ -74,21 +79,25 @@ def weights_init_normal(m):
|
|||
|
||||
def xyxy2xywh(x):
|
||||
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
|
||||
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
|
||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
|
||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
|
||||
y[:, 2] = x[:, 2] - x[:, 0]
|
||||
y[:, 3] = x[:, 3] - x[:, 1]
|
||||
# x, y are coordinates of center
|
||||
# (x1, y1) and (x2, y2) are coordinates of bottom left and top right respectively.
|
||||
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
|
||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||
return y
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
|
||||
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
|
||||
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
|
||||
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
|
||||
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
|
||||
# x, y are coordinates of center
|
||||
# (x1, y1) and (x2, y2) are coordinates of bottom left and top right respectively.
|
||||
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
|
||||
y[:, 0] = (x[:, 0] - x[:, 2] / 2) # Bottom left x
|
||||
y[:, 1] = (x[:, 1] - x[:, 3] / 2) # Bottom left y
|
||||
y[:, 2] = (x[:, 0] + x[:, 2] / 2) # Top right x
|
||||
y[:, 3] = (x[:, 1] + x[:, 3] / 2) # Top right y
|
||||
return y
|
||||
|
||||
|
||||
|
@ -107,7 +116,7 @@ def scale_coords(img_size, coords, img0_shape):
|
|||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
""" Computes the average precision, given the recall and precision curves.
|
||||
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (list).
|
||||
|
@ -161,7 +170,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
|
|||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
""" Computes the average precision, given the recall and precision curves.
|
||||
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
|
||||
# Arguments
|
||||
recall: The recall curve (list).
|
||||
|
@ -542,8 +551,6 @@ def jaccard(box_a, box_b, iscrowd:bool=False):
|
|||
return out if use_batch else out.squeeze(0)
|
||||
|
||||
|
||||
|
||||
|
||||
def return_torch_unique_index(u, uv):
|
||||
n = uv.shape[1] # number of columns
|
||||
first_unique = torch.zeros(n, device=u.device).long()
|
||||
|
@ -555,16 +562,19 @@ def return_torch_unique_index(u, uv):
|
|||
|
||||
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
|
||||
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
|
||||
|
||||
a = torch.load(filename, map_location='cpu')
|
||||
a['optimizer'] = []
|
||||
torch.save(a, filename.replace('.pt', '_lite.pt'))
|
||||
|
||||
|
||||
def plot_results():
|
||||
# Plot YOLO training results file 'results.txt'
|
||||
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v1.txt')
|
||||
|
||||
"""
|
||||
Plot YOLO training results from the file 'results.txt'
|
||||
Example of what this is trying to plot can be found at:
|
||||
https://user-images.githubusercontent.com/26833433/63258271-fe9d5300-c27b-11e9-9a15-95038daf4438.png
|
||||
An example results.txt file:
|
||||
import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v1.txt')
|
||||
"""
|
||||
plt.figure(figsize=(14, 7))
|
||||
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision']
|
||||
files = sorted(glob.glob('results*.txt'))
|
||||
|
|
Loading…
Reference in a new issue