Towards-Realtime-MOT/utils/utils.py

503 lines
19 KiB
Python
Raw Normal View History

2019-09-27 05:37:47 +00:00
import glob
import random
import time
import os
import os.path as osp
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from utils import torch_utils
import maskrcnn_benchmark.layers.nms as nms
from external.lib.nms.cpu_nms import cpu_soft_nms
# Set printoptions
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
def mkdir_if_missing(d):
if not osp.exists(d):
os.makedirs(d)
def float3(x): # format floats to 3 decimals
return float(format(x, '.3f'))
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch_utils.init_seeds(seed=seed)
def load_classes(path):
"""
Loads class labels at 'path'
"""
fp = open(path, 'r')
names = fp.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
def model_info(model): # Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
print('\n%5s %50s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %50s %9s %12g %20s %12.3g %12.3g' % (
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients\n' % (i + 1, n_p, n_g))
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
tl = line_thickness or round(0.0004 * max(img.shape[0:2])) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
def xyxy2xywh(x):
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
return y
def scale_coords(img_size, coords, img0_shape):
# Rescale x1, y1, x2, y2 from 416 to image size
gain_w = float(img_size[0]) / img0_shape[1] # gain = old / new
gain_h = float(img_size[1]) / img0_shape[0]
gain = min(gain_w, gain_h)
pad_x = (img_size[0] - img0_shape[1] * gain) / 2 # width padding
pad_y = (img_size[1] - img0_shape[0] * gain) / 2 # height padding
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, 0:4] /= gain
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
return coords
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# lists/pytorch to numpy
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls)
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (n_p == 0) or (n_gt == 0):
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=False):
"""
Returns the IoU of two bounding boxes
"""
N, M = len(box1), len(box2)
if x1y1x2y2:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
else:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
# get the coordinates of the intersection rectangle
inter_rect_x1 = torch.max(b1_x1.unsqueeze(1), b2_x1)
inter_rect_y1 = torch.max(b1_y1.unsqueeze(1), b2_y1)
inter_rect_x2 = torch.min(b1_x2.unsqueeze(1), b2_x2)
inter_rect_y2 = torch.min(b1_y2.unsqueeze(1), b2_y2)
# Intersection area
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
# Union Area
b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1))
b1_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).view(-1,1).expand(N,M)
b2_area = ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).view(1,-1).expand(N,M)
return inter_area / (b1_area + b2_area - inter_area + 1e-16)
def build_targets_max(target, anchor_wh, nA, nC, nGh, nGw):
"""
returns nT, nCorrect, tx, ty, tw, th, tconf, tcls
"""
nB = len(target) # number of images in batch
txy = torch.zeros(nB, nA, nGh, nGw, 2).cuda() # batch size, anchors, grid size
twh = torch.zeros(nB, nA, nGh, nGw, 2).cuda()
tconf = torch.LongTensor(nB, nA, nGh, nGw).fill_(0).cuda()
tcls = torch.ByteTensor(nB, nA, nGh, nGw, nC).fill_(0).cuda() # nC = number of classes
tid = torch.LongTensor(nB, nA, nGh, nGw, 1).fill_(-1).cuda()
for b in range(nB):
t = target[b]
t_id = t[:, 1].clone().long().cuda()
t = t[:,[0,2,3,4,5]]
nTb = len(t) # number of targets
if nTb == 0:
continue
#gxy, gwh = t[:, 1:3] * nG, t[:, 3:5] * nG
gxy, gwh = t[: , 1:3].clone() , t[:, 3:5].clone()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
gi = torch.clamp(gxy[:, 0], min=0, max=nGw -1).long()
gj = torch.clamp(gxy[:, 1], min=0, max=nGh -1).long()
# Get grid box indices and prevent overflows (i.e. 13.01 on 13 anchors)
#gi, gj = torch.clamp(gxy.long(), min=0, max=nG - 1).t()
#gi, gj = gxy.long().t()
# iou of targets-anchors (using wh only)
box1 = gwh
box2 = anchor_wh.unsqueeze(1)
inter_area = torch.min(box1, box2).prod(2)
iou = inter_area / (box1.prod(1) + box2.prod(2) - inter_area + 1e-16)
# Select best iou_pred and anchor
iou_best, a = iou.max(0) # best anchor [0-2] for each target
# Select best unique target-anchor combinations
if nTb > 1:
_, iou_order = torch.sort(-iou_best) # best to worst
# Unique anchor selection
u = torch.stack((gi, gj, a), 0)[:, iou_order]
# _, first_unique = np.unique(u, axis=1, return_index=True) # first unique indices
first_unique = return_torch_unique_index(u, torch.unique(u, dim=1)) # torch alternative
i = iou_order[first_unique]
# best anchor must share significant commonality (iou) with target
i = i[iou_best[i] > 0.60] # TODO: examine arbitrary threshold
if len(i) == 0:
continue
a, gj, gi, t = a[i], gj[i], gi[i], t[i]
t_id = t_id[i]
if len(t.shape) == 1:
t = t.view(1, 5)
else:
if iou_best < 0.60:
continue
tc, gxy, gwh = t[:, 0].long(), t[:, 1:3].clone(), t[:, 3:5].clone()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
# XY coordinates
txy[b, a, gj, gi] = gxy - gxy.floor()
# Width and height
twh[b, a, gj, gi] = torch.log(gwh / anchor_wh[a]) # yolo method
# twh[b, a, gj, gi] = torch.sqrt(gwh / anchor_wh[a]) / 2 # power method
# One-hot encoding of label
tcls[b, a, gj, gi, tc] = 1
tconf[b, a, gj, gi] = 1
tid[b, a, gj, gi] = t_id.unsqueeze(1)
tbox = torch.cat([txy, twh], -1)
return tconf, tbox, tid
def build_targets_thres(target, anchor_wh, nA, nC, nGh, nGw):
ID_THRESH = 0.5
FG_THRESH = 0.5
BG_THRESH = 0.4
nB = len(target) # number of images in batch
assert(len(anchor_wh)==nA)
tbox = torch.zeros(nB, nA, nGh, nGw, 4).cuda() # batch size, anchors, grid size
tconf = torch.LongTensor(nB, nA, nGh, nGw).fill_(0).cuda()
tid = torch.LongTensor(nB, nA, nGh, nGw, 1).fill_(-1).cuda()
for b in range(nB):
t = target[b]
t_id = t[:, 1].clone().long().cuda()
t = t[:,[0,2,3,4,5]]
nTb = len(t) # number of targets
if nTb == 0:
continue
gxy, gwh = t[: , 1:3].clone() , t[:, 3:5].clone()
gxy[:, 0] = gxy[:, 0] * nGw
gxy[:, 1] = gxy[:, 1] * nGh
gwh[:, 0] = gwh[:, 0] * nGw
gwh[:, 1] = gwh[:, 1] * nGh
gxy[:, 0] = torch.clamp(gxy[:, 0], min=0, max=nGw -1)
gxy[:, 1] = torch.clamp(gxy[:, 1], min=0, max=nGh -1)
gt_boxes = torch.cat([gxy, gwh], dim=1) # Shape Ngx4 (xc, yc, w, h)
anchor_mesh = generate_anchor(nGh, nGw, anchor_wh)
anchor_list = anchor_mesh.permute(0,2,3,1).contiguous().view(-1, 4) # Shpae (nA x nGh x nGw) x 4
#print(anchor_list.shape, gt_boxes.shape)
iou_pdist = bbox_iou(anchor_list, gt_boxes) # Shape (nA x nGh x nGw) x Ng
iou_max, max_gt_index = torch.max(iou_pdist, dim=1) # Shape (nA x nGh x nGw), both
iou_map = iou_max.view(nA, nGh, nGw)
gt_index_map = max_gt_index.view(nA, nGh, nGw)
#nms_map = pooling_nms(iou_map, 3)
id_index = iou_map > ID_THRESH
fg_index = iou_map > FG_THRESH
bg_index = iou_map < BG_THRESH
ign_index = (iou_map < FG_THRESH) * (iou_map > BG_THRESH)
tconf[b][fg_index] = 1
tconf[b][bg_index] = 0
tconf[b][ign_index] = -1
gt_index = gt_index_map[fg_index]
gt_box_list = gt_boxes[gt_index]
gt_id_list = t_id[gt_index_map[id_index]]
#print(gt_index.shape, gt_index_map[id_index].shape, gt_boxes.shape)
if torch.sum(fg_index) > 0:
tid[b][id_index] = gt_id_list.unsqueeze(1)
fg_anchor_list = anchor_list.view(nA, nGh, nGw, 4)[fg_index]
delta_target = encode_delta(gt_box_list, fg_anchor_list)
tbox[b][fg_index] = delta_target
return tconf, tbox, tid
def generate_anchor(nGh, nGw, anchor_wh):
nA = len(anchor_wh)
yy, xx =torch.meshgrid(torch.arange(nGh), torch.arange(nGw))
xx, yy = xx.cuda(), yy.cuda()
mesh = torch.stack([xx, yy], dim=0) # Shape 2, nGh, nGw
mesh = mesh.unsqueeze(0).repeat(nA,1,1,1).float() # Shape nA x 2 x nGh x nGw
anchor_offset_mesh = anchor_wh.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, nGh,nGw) # Shape nA x 2 x nGh x nGw
anchor_mesh = torch.cat([mesh, anchor_offset_mesh], dim=1) # Shape nA x 4 x nGh x nGw
return anchor_mesh
def encode_delta(gt_box_list, fg_anchor_list):
px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
fg_anchor_list[:, 2], fg_anchor_list[:,3]
gx, gy, gw, gh = gt_box_list[:, 0], gt_box_list[:, 1], \
gt_box_list[:, 2], gt_box_list[:, 3]
dx = (gx - px) / pw
dy = (gy - py) / ph
dw = torch.log(gw/pw)
dh = torch.log(gh/ph)
return torch.stack([dx, dy, dw, dh], dim=1)
def decode_delta(delta, fg_anchor_list):
px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
fg_anchor_list[:, 2], fg_anchor_list[:,3]
dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3]
gx = pw * dx + px
gy = ph * dy + py
gw = pw * torch.exp(dw)
gh = ph * torch.exp(dh)
return torch.stack([gx, gy, gw, gh], dim=1)
def decode_delta_map(delta_map, anchors):
'''
:param: delta_map, shape (nB, nA, nGh, nGw, 4)
:param: anchors, shape (nA,4)
'''
nB, nA, nGh, nGw, _ = delta_map.shape
anchor_mesh = generate_anchor(nGh, nGw, anchors)
anchor_mesh = anchor_mesh.permute(0,2,3,1).contiguous() # Shpae (nA x nGh x nGw) x 4
anchor_mesh = anchor_mesh.unsqueeze(0).repeat(nB,1,1,1,1)
pred_list = decode_delta(delta_map.view(-1,4), anchor_mesh.view(-1,4))
pred_map = pred_list.view(nB, nA, nGh, nGw, 4)
return pred_map
def pooling_nms(heatmap, kernel=1):
pad = (kernel -1 ) // 2
hmax = F.max_pool2d(heatmap, (kernel, kernel), stride=1, padding=pad)
keep = (hmax == heatmap).float()
return keep * heatmap
def soft_nms(dets, sigma=0.5, Nt=0.3, threshold=0.05, method=1):
keep = cpu_soft_nms(np.ascontiguousarray(dets, dtype=np.float32),
np.float32(sigma), np.float32(Nt),
np.float32(threshold),
np.uint8(method))
return keep
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4, method=-1):
"""
Removes detections with lower object confidence score than 'conf_thres'
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_score, class_pred)
"""
output = [None for _ in range(len(prediction))]
for image_i, pred in enumerate(prediction):
# Filter out confidence scores below threshold
# Get score and class with highest confidence
v = pred[:, 4] > conf_thres
v = v.nonzero().squeeze()
if len(v.shape) == 0:
v = v.unsqueeze(0)
pred = pred[v]
# If none are remaining => process next image
nP = pred.shape[0]
if not nP:
continue
# From (center x, center y, width, height) to (x1, y1, x2, y2)
pred[:, :4] = xywh2xyxy(pred[:, :4])
# Non-maximum suppression
if method == -1:
nms_indices = nms(pred[:, :4], pred[:, 4], nms_thres)
else:
dets = pred[:, :5].clone().contiguous().data.cpu().numpy()
nms_indices = soft_nms(dets, Nt=nms_thres, method=method)
det_max = pred[nms_indices]
if len(det_max) > 0:
# Add max detections to outputs
output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max))
return output
def return_torch_unique_index(u, uv):
n = uv.shape[1] # number of columns
first_unique = torch.zeros(n, device=u.device).long()
for j in range(n):
first_unique[j] = (uv[:, j:j + 1] == u).all(0).nonzero()[0]
return first_unique
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
def plot_results():
# Plot YOLO training results file 'results.txt'
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v1.txt')
plt.figure(figsize=(14, 7))
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision']
files = sorted(glob.glob('results*.txt'))
for f in files:
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP
x = range(1, results.shape[1])
for i in range(8):
plt.subplot(2, 4, i + 1)
plt.plot(x, results[i, x], marker='.', label=f)
plt.title(s[i])
if i == 0:
plt.legend()