Towards-Realtime-MOT/tracker/mot_tracker.py

474 lines
18 KiB
Python
Raw Normal View History

2019-09-27 05:37:47 +00:00
import numpy as np
from numba import jit
from collections import deque
import itertools
import os
import os.path as osp
import time
import torch
from utils.utils import *
from utils.log import logger
from models import *
from tracker import matching
from .basetrack import BaseTrack, TrackState
class STrack(BaseTrack):
def __init__(self, tlwh, score, temp_feat, buffer_size=30):
# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self.is_activated = False
self.score = score
self.tracklet_len = 0
self.smooth_feat = None
self.update_features(temp_feat)
self.features = deque([], maxlen=buffer_size)
def update_features(self, feat):
print(1)
self.curr_feat = feat
if self.smooth_feat is None:
self.smooth_feat = feat
else:
self.smooth_feat = 0.9 *self.smooth_feat + 0.1 * feat
self.features.append(temp_feat)
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
def activate(self, frame_id):
"""Start a new tracklet"""
self.track_id = self.next_id()
self.time_since_update = 0
self.tracklet_len = 0
self.state = TrackState.Tracked
#self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
def re_activate(self, new_track, frame_id, new_id=False):
self._tlwh = new_track.tlwh
#self.features.append(new_track.curr_feat)
self.update_features(new_track.curr_feat)
self.time_since_update = 0
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
def update(self, new_track, frame_id, update_feature=True):
"""
Update a matched track
:type new_track: STrack
:type frame_id: int
:type update_feature: bool
:return:
"""
self.frame_id = frame_id
self.time_since_update = 0
self.tracklet_len += 1
self._tlwh = new_track.tlwh
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
if update_feature:
#self.features.append( new_track.curr_feat)
self.update_features(new_track.curr_feat)
@property
@jit
def tlwh(self):
"""Get current position in bounding box format `(top left x, top left y,
width, height)`.
"""
return self._tlwh.copy()
@property
@jit
def tlbr(self):
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
`(top left, bottom right)`.
"""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
@staticmethod
@jit
def tlbr_to_tlwh(tlbr):
ret = np.asarray(tlbr).copy()
ret[2:] -= ret[:2]
return ret
@staticmethod
@jit
def tlwh_to_tlbr(tlwh):
ret = np.asarray(tlwh).copy()
ret[2:] += ret[:2]
return ret
def __repr__(self):
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
class IOUTracker(object):
def __init__(self, opt, frame_rate=30):
self.opt = opt
self.model = Darknet(opt.cfg, opt.img_size, nID=14455)
#load_darknet_weights(self.model, opt.weights)
self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'])
self.model.cuda().eval()
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.det_thresh = opt.conf_thres
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
self.max_time_lost = self.buffer_size
#self.fmap_buffer = deque([], maxlen=self.buffer_size)
def update(self, im_blob, img0):
self.frame_id += 1
activated_starcks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
t1 = time.time()
'''Forward'''
with torch.no_grad():
pred = self.model(im_blob)
pred = pred[pred[:, :, 4] > self.opt.conf_thres]
if len(pred) > 0:
dets = non_max_suppression(pred.unsqueeze(0), self.opt.conf_thres, self.opt.nms_thres)[0]
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
'''Detections'''
detections = [STrack(STrack.tlbr_to_tlwh((t, l, b, r)), s, None) for (t, l, b, r, s) in dets[:, :5]]
else:
detections = []
t2 = time.time()
#print('Forward: {} s'.format(t2-t1))
'''matching for tracked targets'''
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
#dists = self.track_matching(strack_pool, detections, base_feat)
dists = matching.iou_distance(strack_pool, detections)
#dists[np.where(iou_dists>0.4)] = 1.0
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(detections[idet], self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
t3 = time.time()
#print('First match {} s'.format(t3-t2))
#'''Remained det/track, use IOU between dets and tracks to associate directly'''
#detections = [detections[i] for i in u_detection]
#r_tracked_stracks = [strack_pool[i] for i in u_track ]
#dists = matching.iou_distance(r_tracked_stracks, detections)
#matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)
#for itracked, idet in matches:
# r_tracked_stracks[itracked].update(detections[idet], self.frame_id)
for it in u_track:
track = strack_pool[it]
if not track.state == TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
detections = [detections[i] for i in u_detection]
dists = matching.iou_distance(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
"""step 4: init new stracks"""
for inew in u_detection:
track = detections[inew]
if track.score < self.det_thresh:
continue
track.activate(self.frame_id)
activated_starcks.append(track)
"""step 6: update state"""
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
t4 = time.time()
#print('Ramained match {} s'.format(t4-t3))
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
#self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack]
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
self.removed_stracks.extend(removed_stracks)
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
# get scores of lost tracks
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
logger.debug('===========Frame {}=========='.format(self.frame_id))
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
t5 = time.time()
#print('Final {} s'.format(t5-t4))
return output_stracks
class AETracker(object):
def __init__(self, opt, frame_rate=30):
self.opt = opt
self.model = Darknet(opt.cfg, opt.img_size, nID=14455)
# load_darknet_weights(self.model, opt.weights)
self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'])
self.model.cuda().eval()
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.det_thresh = opt.conf_thres
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
self.max_time_lost = self.buffer_size
def update(self, im_blob, img0):
self.frame_id += 1
activated_starcks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
t1 = time.time()
'''Forward'''
with torch.no_grad():
pred = self.model(im_blob)
pred = pred[pred[:, :, 4] > self.opt.conf_thres]
if len(pred) > 0:
dets = non_max_suppression(pred.unsqueeze(0), self.opt.conf_thres, self.opt.nms_thres)[0].cpu()
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
'''Detections'''
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f.numpy(), 30) for
(tlbrs, f) in zip(dets[:, :5], dets[:, -self.model.emb_dim:])]
else:
detections = []
t2 = time.time()
# print('Forward: {} s'.format(t2-t1))
'''matching for tracked targets'''
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
#strack_pool = tracked_stracks
dists = matching.embedding_distance(strack_pool, detections)
iou_dists = matching.iou_distance(strack_pool, detections)
dists[np.where(iou_dists>0.99)] = 1.0
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(detections[idet], self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# detections = [detections[i] for i in u_detection]
# dists = matching.embedding_distance(self.lost_stracks, detections)
# iou_dists = matching.iou_distance(self.lost_stracks, detections)
# dists[np.where(iou_dists>0.7)] = 1.0
#
# matches, u_track_lost, u_detection = matching.linear_assignment(dists, thresh=0.7)
#
# for itracked, idet in matches:
# track = self.lost_stracks[itracked]
# det = detections[idet]
# if track.state == TrackState.Tracked:
# track.update(detections[idet], self.frame_id)
# activated_starcks.append(track)
# else:
# track.re_activate(det, self.frame_id, new_id=False)
# refind_stracks.append(track)
'''Remained det/track, use IOU between dets and tracks to associate directly'''
detections = [detections[i] for i in u_detection]
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state==TrackState.Tracked ]
r_lost_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state!=TrackState.Tracked ]
dists = matching.iou_distance(r_tracked_stracks, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
track = r_tracked_stracks[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
for it in u_track:
track = r_tracked_stracks[it]
if not track.state == TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
# '''Remained det/track, use IOU between dets and tracks to associate directly'''
# detections = [detections[i] for i in u_detection]
# dists = matching.iou_distance(r_lost_stracks, detections)
# matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.25)
#
# for itracked, idet in matches:
# track = r_lost_stracks[itracked]
# det = detections[idet]
# if track.state == TrackState.Tracked:
# track.update(det, self.frame_id)
# activated_starcks.append(track)
# else:
# track.re_activate(det, self.frame_id, new_id=False)
# refind_stracks.append(track)
#
# for it in u_track:
# track = r_lost_stracks[it]
# if not track.state == TrackState.Lost:
# track.mark_lost()
# lost_stracks.append(track)
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
detections = [detections[i] for i in u_detection]
dists = matching.iou_distance(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
activated_starcks.append(unconfirmed[itracked])
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
"""step 4: init new stracks"""
for inew in u_detection:
track = detections[inew]
if track.score < self.det_thresh:
continue
track.activate(self.frame_id)
activated_starcks.append(track)
"""step 6: update state"""
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
t4 = time.time()
# print('Ramained match {} s'.format(t4-t3))
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
# self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack]
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
self.removed_stracks.extend(removed_stracks)
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
# get scores of lost tracks
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
logger.debug('===========Frame {}=========='.format(self.frame_id))
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
t5 = time.time()
# print('Final {} s'.format(t5-t4))
return output_stracks
def joint_stracks(tlista, tlistb):
exists = {}
res = []
for t in tlista:
exists[t.track_id] = 1
res.append(t)
for t in tlistb:
tid = t.track_id
if not exists.get(tid, 0):
exists[tid] = 1
res.append(t)
return res
def sub_stracks(tlista, tlistb):
stracks = {}
for t in tlista:
stracks[t.track_id] = t
for t in tlistb:
tid = t.track_id
if stracks.get(tid, 0):
del stracks[tid]
return list(stracks.values())
def remove_duplicate_stracks(stracksa, stracksb):
pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist<0.15)
dupa, dupb = list(), list()
for p,q in zip(*pairs):
timep = stracksa[p].frame_id - stracksa[p].start_frame
timeq = stracksb[q].frame_id - stracksb[q].start_frame
if timep > timeq:
dupb.append(q)
else:
dupa.append(p)
resa = [t for i,t in enumerate(stracksa) if not i in dupa]
resb = [t for i,t in enumerate(stracksb) if not i in dupb]
return resa, resb