Towards-Realtime-MOT/utils/io.py

112 lines
3.5 KiB
Python
Raw Normal View History

import os
from typing import Dict
import numpy as np
from utils.log import logger
def write_results(filename, results_dict: Dict, data_type: str):
if not filename:
return
path = os.path.dirname(filename)
if not os.path.exists(path):
os.makedirs(path)
if data_type in ('mot', 'mcmot', 'lab'):
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian -1 -1 -10 {x1} {y1} {x2} {y2} -1 -1 -1 -1000 -1000 -1000 -10 {score}\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, frame_data in results_dict.items():
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id in frame_data:
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=1.0)
f.write(line)
logger.info('Save results to {}'.format(filename))
def read_results(filename, data_type: str, is_gt=False, is_ignore=False):
if data_type in ('mot', 'lab'):
read_fun = read_mot_results
else:
raise ValueError('Unknown data type: {}'.format(data_type))
return read_fun(filename, is_gt, is_ignore)
"""
labels={'ped', ... % 1
'person_on_vhcl', ... % 2
'car', ... % 3
'bicycle', ... % 4
'mbike', ... % 5
'non_mot_vhcl', ... % 6
'static_person', ... % 7
'distractor', ... % 8
'occluder', ... % 9
'occluder_on_grnd', ... %10
'occluder_full', ... % 11
'reflection', ... % 12
'crowd' ... % 13
};
"""
def read_mot_results(filename, is_gt, is_ignore):
valid_labels = {1}
ignore_labels = {2, 7, 8, 12}
results_dict = dict()
if os.path.isfile(filename):
with open(filename, 'r') as f:
for line in f.readlines():
linelist = line.split(',')
if len(linelist) < 7:
continue
fid = int(linelist[0])
if fid < 1:
continue
results_dict.setdefault(fid, list())
if is_gt:
if 'MOT16-' in filename or 'MOT17-' in filename:
label = int(float(linelist[7]))
mark = int(float(linelist[6]))
if mark == 0 or label not in valid_labels:
continue
score = 1
elif is_ignore:
if 'MOT16-' in filename or 'MOT17-' in filename:
label = int(float(linelist[7]))
vis_ratio = float(linelist[8])
if label not in ignore_labels and vis_ratio >= 0:
continue
else:
continue
score = 1
else:
score = float(linelist[6])
tlwh = tuple(map(float, linelist[2:6]))
target_id = int(linelist[1])
results_dict[fid].append((tlwh, target_id, score))
return results_dict
def unzip_objs(objs):
if len(objs) > 0:
tlwhs, ids, scores = zip(*objs)
else:
tlwhs, ids, scores = [], [], []
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
2019-09-27 05:37:47 +00:00
return tlwhs, ids, scores