Towards-Realtime-MOT/test.py

263 lines
10 KiB
Python
Raw Permalink Normal View History

import argparse
import json
import time
from pathlib import Path
from sklearn import metrics
from scipy import interpolate
import torch.nn.functional as F
from models import *
from utils.utils import *
from torchvision.transforms import transforms as T
from utils.datasets import LoadImagesAndLabels, JointDataset, collate_fn
def test(
cfg,
data_cfg,
weights,
batch_size=16,
iou_thres=0.5,
conf_thres=0.3,
nms_thres=0.45,
print_interval=40,
):
# Configure run
f = open(data_cfg)
data_cfg_dict = json.load(f)
f.close()
#nC = int(data_cfg_dict['classes']) # number of classes (80 for COCO)
nC = 1
test_path = data_cfg_dict['test']
dataset_root = data_cfg_dict['root']
cfg_dict = parse_model_cfg(cfg)
img_size = [int(cfg_dict[0]['width']), int(cfg_dict[0]['height'])]
# Initialize model
model = Darknet(cfg_dict, test_emb=False)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'], strict=False)
else: # darknet format
load_darknet_weights(model, weights)
model = torch.nn.DataParallel(model)
model.cuda().eval()
# Get dataloader
transforms = T.Compose([T.ToTensor()])
dataset = JointDataset(dataset_root, test_path, img_size, augment=False, transforms=transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False,
num_workers=8, drop_last=False, collate_fn=collate_fn)
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class, jdict = \
[], [], [], [], [], [], [], [], []
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
for batch_i, (imgs, targets, paths, shapes, targets_len) in enumerate(dataloader):
t = time.time()
output = model(imgs.cuda())
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
for i, o in enumerate(output):
if o is not None:
output[i] = o[:, :6]
# Compute average precision for each sample
targets = [targets[i][:int(l)] for i,l in enumerate(targets_len)]
for si, (labels, detections) in enumerate(zip(targets, output)):
seen += 1
if detections is None:
# If there are labels but no detections mark as zero AP
if labels.size(0) != 0:
mAPs.append(0), mR.append(0), mP.append(0)
continue
# Get detections sorted by decreasing confidence scores
detections = detections.cpu().numpy()
detections = detections[np.argsort(-detections[:, 4])]
# If no labels add number of detections as incorrect
correct = []
if labels.size(0) == 0:
# correct.extend([0 for _ in range(len(detections))])
mAPs.append(0), mR.append(0), mP.append(0)
continue
else:
target_cls = labels[:, 0]
# Extract target boxes as (x1, y1, x2, y2)
target_boxes = xywh2xyxy(labels[:, 2:6])
target_boxes[:, 0] *= img_size[0]
target_boxes[:, 2] *= img_size[0]
target_boxes[:, 1] *= img_size[1]
target_boxes[:, 3] *= img_size[1]
detected = []
for *pred_bbox, conf, obj_conf in detections:
obj_pred = 0
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
# Compute iou with target boxes
iou = bbox_iou(pred_bbox, target_boxes, x1y1x2y2=True)[0]
# Extract index of largest overlap
best_i = np.argmax(iou)
# If overlap exceeds threshold and classification is correct mark as correct
if iou[best_i] > iou_thres and obj_pred == labels[best_i, 0] and best_i not in detected:
correct.append(1)
detected.append(best_i)
else:
correct.append(0)
# Compute Average Precision (AP) per class
AP, AP_class, R, P = ap_per_class(tp=correct,
conf=detections[:, 4],
pred_cls=np.zeros_like(detections[:, 5]), # detections[:, 6]
target_cls=target_cls)
# Accumulate AP per class
AP_accum_count += np.bincount(AP_class, minlength=nC)
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
# Compute mean AP across all classes in this image, and append to image list
mAPs.append(AP.mean())
mR.append(R.mean())
mP.append(P.mean())
# Means of all images
mean_mAP = np.sum(mAPs) / ( AP_accum_count + 1E-16)
mean_R = np.sum(mR) / ( AP_accum_count + 1E-16)
mean_P = np.sum(mP) / (AP_accum_count + 1E-16)
if batch_i % print_interval==0:
# Print image mAP and running mean mAP
print(('%11s%11s' + '%11.3g' * 4 + 's') %
(seen, dataloader.dataset.nF, mean_P, mean_R, mean_mAP, time.time() - t))
# Print mAP per class
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
print('AP: %-.4f\n\n' % (AP_accum[0] / (AP_accum_count[0] + 1E-16)))
# Return mAP
return mean_mAP, mean_R, mean_P
def test_emb(
cfg,
data_cfg,
weights,
batch_size=16,
iou_thres=0.5,
conf_thres=0.3,
nms_thres=0.45,
print_interval=40,
):
# Configure run
f = open(data_cfg)
data_cfg_dict = json.load(f)
f.close()
test_paths = data_cfg_dict['test_emb']
dataset_root = data_cfg_dict['root']
cfg_dict = parse_model_cfg(cfg)
img_size = [int(cfg_dict[0]['width']), int(cfg_dict[0]['height'])]
# Initialize model
model = Darknet(cfg_dict, test_emb=True)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'], strict=False)
else: # darknet format
load_darknet_weights(model, weights)
model = torch.nn.DataParallel(model)
model.cuda().eval()
# Get dataloader
transforms = T.Compose([T.ToTensor()])
dataset = JointDataset(dataset_root, test_paths, img_size, augment=False, transforms=transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False,
num_workers=8, drop_last=False, collate_fn=collate_fn)
embedding, id_labels = [], []
print('Extracting pedestrain features...')
for batch_i, (imgs, targets, paths, shapes, targets_len) in enumerate(dataloader):
t = time.time()
output = model(imgs.cuda(), targets.cuda(), targets_len.cuda()).squeeze()
for out in output:
feat, label = out[:-1], out[-1].long()
if label != -1:
embedding.append(feat)
id_labels.append(label)
if batch_i % print_interval==0:
print('Extracting {}/{}, # of instances {}, time {:.2f} sec.'.format(batch_i, len(dataloader), len(id_labels), time.time() - t))
print('Computing pairwise similairity...')
if len(embedding) <1 :
return None
embedding = torch.stack(embedding, dim=0).cuda()
id_labels = torch.LongTensor(id_labels)
n = len(id_labels)
print(n, len(embedding))
assert len(embedding) == n
embedding = F.normalize(embedding, dim=1)
pdist = torch.mm(embedding, embedding.t()).cpu().numpy()
gt = id_labels.expand(n,n).eq(id_labels.expand(n,n).t()).numpy()
up_triangle = np.where(np.triu(pdist)- np.eye(n)*pdist !=0)
pdist = pdist[up_triangle]
gt = gt[up_triangle]
far_levels = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
far,tar,threshold = metrics.roc_curve(gt, pdist)
interp = interpolate.interp1d(far, tar)
tar_at_far = [interp(x) for x in far_levels]
for f,fa in enumerate(far_levels):
print('TPR@FAR={:.7f}: {:.4f}'.format(fa, tar_at_far[f]))
return tar_at_far
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=40, help='size of each image batch')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='cfg/ccmcpe.json', help='data config')
parser.add_argument('--weights', type=str, default='weights/latest.pt', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--print-interval', type=int, default=10, help='size of each image dimension')
parser.add_argument('--test-emb', action='store_true', help='test embedding')
opt = parser.parse_args()
print(opt, end='\n\n')
with torch.no_grad():
if opt.test_emb:
res = test_emb(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.batch_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.print_interval,
)
else:
mAP = test(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.batch_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.print_interval,
)