223 lines
8.9 KiB
C++
223 lines
8.9 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// FaceLandmarkImg.cpp : Defines the entry point for the console application for detecting landmarks in images.
|
|
|
|
#include "LandmarkCoreIncludes.h"
|
|
|
|
// System includes
|
|
#include <fstream>
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
// Boost includes
|
|
#include <filesystem.hpp>
|
|
#include <filesystem/fstream.hpp>
|
|
|
|
#include <dlib/image_processing/frontal_face_detector.h>
|
|
|
|
#include <tbb/tbb.h>
|
|
|
|
#include <FaceAnalyser.h>
|
|
#include <GazeEstimation.h>
|
|
|
|
#include <ImageCapture.h>
|
|
#include <Visualizer.h>
|
|
#include <VisualizationUtils.h>
|
|
#include <RecorderOpenFace.h>
|
|
#include <RecorderOpenFaceParameters.h>
|
|
|
|
|
|
#ifndef CONFIG_DIR
|
|
#define CONFIG_DIR "~"
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
vector<string> get_arguments(int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments;
|
|
|
|
for(int i = 0; i < argc; ++i)
|
|
{
|
|
arguments.push_back(string(argv[i]));
|
|
}
|
|
return arguments;
|
|
}
|
|
|
|
int main (int argc, char **argv)
|
|
{
|
|
|
|
//Convert arguments to more convenient vector form
|
|
vector<string> arguments = get_arguments(argc, argv);
|
|
|
|
// Prepare for image reading
|
|
Utilities::ImageCapture image_reader;
|
|
|
|
// The sequence reader chooses what to open based on command line arguments provided
|
|
if (!image_reader.Open(arguments))
|
|
{
|
|
cout << "Could not open any images" << endl;
|
|
return 1;
|
|
}
|
|
|
|
// Load the models if images found
|
|
LandmarkDetector::FaceModelParameters det_parameters(arguments);
|
|
|
|
// The modules that are being used for tracking
|
|
cout << "Loading the model" << endl;
|
|
LandmarkDetector::CLNF face_model(det_parameters.model_location);
|
|
cout << "Model loaded" << endl;
|
|
|
|
// Load facial feature extractor and AU analyser (make sure it is static)
|
|
FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments);
|
|
face_analysis_params.OptimizeForImages();
|
|
FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params);
|
|
|
|
// If bounding boxes not provided, use a face detector
|
|
cv::CascadeClassifier classifier(det_parameters.face_detector_location);
|
|
dlib::frontal_face_detector face_detector_hog = dlib::get_frontal_face_detector();
|
|
|
|
// A utility for visualizing the results
|
|
Utilities::Visualizer visualizer(arguments);
|
|
|
|
cv::Mat captured_image;
|
|
|
|
captured_image = image_reader.GetNextImage();
|
|
|
|
cout << "Starting tracking" << endl;
|
|
while (!captured_image.empty())
|
|
{
|
|
|
|
Utilities::RecorderOpenFaceParameters recording_params(arguments, false, false,
|
|
image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy);
|
|
Utilities::RecorderOpenFace open_face_rec(image_reader.name, recording_params, arguments);
|
|
|
|
visualizer.SetImage(captured_image, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy);
|
|
|
|
if (recording_params.outputGaze() && !face_model.eye_model)
|
|
cout << "WARNING: no eye model defined, but outputting gaze" << endl;
|
|
|
|
// Making sure the image is in uchar grayscale
|
|
cv::Mat_<uchar> grayscale_image = image_reader.GetGrayFrame();
|
|
|
|
// Detect faces in an image
|
|
vector<cv::Rect_<double> > face_detections;
|
|
|
|
if (image_reader.has_bounding_boxes)
|
|
{
|
|
face_detections = image_reader.GetBoundingBoxes();
|
|
}
|
|
else
|
|
{
|
|
if (det_parameters.curr_face_detector == LandmarkDetector::FaceModelParameters::HOG_SVM_DETECTOR)
|
|
{
|
|
vector<double> confidences;
|
|
LandmarkDetector::DetectFacesHOG(face_detections, grayscale_image, face_detector_hog, confidences);
|
|
}
|
|
else
|
|
{
|
|
LandmarkDetector::DetectFaces(face_detections, grayscale_image, classifier);
|
|
}
|
|
}
|
|
|
|
// Detect landmarks around detected faces
|
|
int face_det = 0;
|
|
// perform landmark detection for every face detected
|
|
for (size_t face = 0; face < face_detections.size(); ++face)
|
|
{
|
|
// if there are multiple detections go through them
|
|
bool success = LandmarkDetector::DetectLandmarksInImage(grayscale_image, face_detections[face], face_model, det_parameters);
|
|
|
|
// Estimate head pose and eye gaze
|
|
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy);
|
|
|
|
// Gaze tracking, absolute gaze direction
|
|
cv::Point3f gaze_direction0(0, 0, -1);
|
|
cv::Point3f gaze_direction1(0, 0, -1);
|
|
cv::Vec2d gaze_angle(0, 0);
|
|
|
|
if (face_model.eye_model)
|
|
{
|
|
GazeAnalysis::EstimateGaze(face_model, gaze_direction0, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy, true);
|
|
GazeAnalysis::EstimateGaze(face_model, gaze_direction1, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy, false);
|
|
gaze_angle = GazeAnalysis::GetGazeAngle(gaze_direction0, gaze_direction1);
|
|
}
|
|
|
|
cv::Mat sim_warped_img;
|
|
cv::Mat_<double> hog_descriptor; int num_hog_rows = 0, num_hog_cols = 0;
|
|
|
|
// Perform AU detection and HOG feature extraction, as this can be expensive only compute it if needed by output or visualization
|
|
if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || recording_params.outputAUs() || visualizer.vis_align || visualizer.vis_hog)
|
|
{
|
|
face_analyser.PredictStaticAUsAndComputeFeatures(captured_image, face_model.detected_landmarks);
|
|
face_analyser.GetLatestAlignedFace(sim_warped_img);
|
|
face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, num_hog_cols);
|
|
}
|
|
|
|
// Displaying the tracking visualizations
|
|
visualizer.SetObservationFaceAlign(sim_warped_img);
|
|
visualizer.SetObservationHOG(hog_descriptor, num_hog_rows, num_hog_cols);
|
|
visualizer.SetObservationLandmarks(face_model.detected_landmarks, 1.0, face_model.GetVisibilities()); // Set confidence to high to make sure we always visualize
|
|
visualizer.SetObservationPose(pose_estimate, 1.0);
|
|
visualizer.SetObservationGaze(gaze_direction0, gaze_direction1, LandmarkDetector::CalculateAllEyeLandmarks(face_model), LandmarkDetector::Calculate3DEyeLandmarks(face_model, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy), face_model.detection_certainty);
|
|
|
|
// Setting up the recorder output
|
|
open_face_rec.SetObservationHOG(face_model.detection_success, hog_descriptor, num_hog_rows, num_hog_cols, 31); // The number of channels in HOG is fixed at the moment, as using FHOG
|
|
open_face_rec.SetObservationVisualization(visualizer.GetVisImage());
|
|
open_face_rec.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), face_analyser.GetCurrentAUsClass());
|
|
open_face_rec.SetObservationLandmarks(face_model.detected_landmarks, face_model.GetShape(image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy),
|
|
face_model.params_global, face_model.params_local, face_model.detection_certainty, face_model.detection_success);
|
|
open_face_rec.SetObservationPose(pose_estimate);
|
|
open_face_rec.SetObservationGaze(gaze_direction0, gaze_direction1, gaze_angle, LandmarkDetector::CalculateAllEyeLandmarks(face_model), LandmarkDetector::Calculate3DEyeLandmarks(face_model, image_reader.fx, image_reader.fy, image_reader.cx, image_reader.cy));
|
|
open_face_rec.SetObservationFaceAlign(sim_warped_img);
|
|
open_face_rec.WriteObservation();
|
|
|
|
}
|
|
if(face_detections.size() > 0)
|
|
{
|
|
visualizer.ShowObservation();
|
|
}
|
|
|
|
// Grabbing the next frame in the sequence
|
|
captured_image = image_reader.GetNextImage();
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|