sustaining_gazes/python_scripts/heatmap.py
2018-05-02 14:24:43 +02:00

278 lines
11 KiB
Python

import numpy as np
import os
import pickle
import logging
from scipy.ndimage.filters import gaussian_filter
from PIL import Image, ImageDraw,ImageTk
from matplotlib import cm
import sys
if sys.version_info[0] < 3:
import Tkinter as Tk
else:
import tkinter as Tk
import time
import argparse
import subprocess
import json
import termios, fcntl, os
class Heatmap:
def __init__(self, metricsSize, logger, coordinates_filename):
self.coordinates_filename = coordinates_filename
self.logger = logger
self.metricsSize = metricsSize
self.metrics = np.zeros((metricsSize[1], metricsSize[0])) # (y, x)
self.screenDrawCorners = np.array([
[0,0],
[metricsSize[0]-1,0],
[0, metricsSize[1]-1],
[metricsSize[0]-1,metricsSize[1]-1]
])
self.loadCoordinates()
self.windowRoot = Tk.Toplevel()
imageWindowSize = tuple(metricsSize)
self.windowRoot.geometry('%dx%d+%d+%d' % (imageWindowSize[0],imageWindowSize[1],0,0))
self.canvas = Tk.Canvas(self.windowRoot,width=imageWindowSize[0],height=imageWindowSize[1])
self.canvas.pack()
self.updateWindow()
def updateFromJson(self, frame):
self.logger.info("Received %s", frame)
newMetrics = np.zeros((self.metricsSize[1], self.metricsSize[0]))
for face in frame:
# {u'confidence': 0.983333, u'head_rot': [0.270533, -0.0669274, 0.113554], u'gaze_angle': [0.025313, 0.403179], u'fid': 0, u'head_pos': [73.5302, 26.4475, 399.764]}
x, y = self.getTargetOfFace(face)
self.logger.debug("Face %d on %s", face['fid'], [x,y])
targetPoint = self.transform(np.array([x,y]))
self.logger.info("Looking at %s", targetPoint)
targetInt = (int(targetPoint[0]), int(targetPoint[1]))
# check if point fits on screen:
# if so, measure it
if targetInt[0] >= 0 and targetInt[1] >= 0 and targetInt[0] < self.metricsSize[1] and targetInt[1] < self.metricsSize[0]:
newMetrics[targetInt[1],targetInt[0]] += float(face['confidence'])
self.metrics = self.metrics + gaussian_filter(newMetrics, sigma = 8)
self.updateWindow()
def updateWindow(self):
normalisedMetrics = self.metrics / (np.max(self.metrics))
# convert to colormap, thanks to: https://stackoverflow.com/a/10967471
normalisedMetrics = np.uint8(cm.plasma(normalisedMetrics)*255)
image = Image.fromarray(normalisedMetrics)
wpercent = (self.metricsSize[0] / float(image.size[0]))
hsize = int((float(image.size[1]) * float(wpercent)))
image = image.resize((self.metricsSize[0], hsize))
tkpi = ImageTk.PhotoImage(image)
self.canvas.delete("IMG")
imagesprite = self.canvas.create_image(500,500,image=tkpi, tags="IMG")
self.windowRoot.update()
def getTargetOfFace(self, face):
x = np.arctan(face['gaze_angle'][0])*face['head_pos'][2] + face['head_pos'][0]
y = np.arctan(face['gaze_angle'][1])*face['head_pos'][2] + face['head_pos'][1]
return (x,y)
def loadCoordinates(self):
# coordinates of the screen boundaries
if os.path.exists(self.coordinates_filename):
self.coordinates = pickle.load(open(self.coordinates_filename, "rb"))
else:
self.coordinates = {'tl': None, 'tr': None, 'bl': None, 'br': None}
self.updateTransform()
def saveCoordinates(self):
self.logger.debug(self.coordinates.values())
pickle.dump(self.coordinates, open( self.coordinates_filename, "wb" ) )
self.logger.info("Saved coordinates to %s", self.coordinates_filename)
def updateTransform(self):
if self.hasAllCoordinates() :
self.transform = create_perspective_transform(coordinatesToSrc(self.coordinates), self.screenDrawCorners)
else:
self.transform = None
self.logger.debug("Corners: %s", self.screenDrawCorners)
def hasAllCoordinates(self):
return not any (x is None for x in self.coordinates.values())
def setCoordinate(self, pos, face):
self.coordinates[pos] = self.getTargetOfFace(face)
if self.hasAllCoordinates():
self.saveCoordinates()
self.updateTransform()
def main(openface_exec, coordinates_filename, device=0):
logging.basicConfig( format='%(asctime)-15s %(name)s %(levelname)s: %(message)s' )
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
fd = sys.stdin.fileno()
oldterm = termios.tcgetattr(fd)
newattr = termios.tcgetattr(fd)
newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
termios.tcsetattr(fd, termios.TCSANOW, newattr)
oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)
try:
# metrics matrix
metricsSize = [1920,1080]
heatmap = Heatmap(metricsSize, logger, coordinates_filename)
for output in execute([openface_exec, "-device", str(device), "-cam_width", "1280", "-cam_height", "720"]):
try:
frame = json.loads(output)
heatmap.updateFromJson(frame)
try:
c = sys.stdin.read(1)
c = int(c)
if c == 1:
heatmap.setCoordinate("tl", frame[0])
elif c == 2:
heatmap.setCoordinate("tr", frame[0])
elif c == 3:
heatmap.setCoordinate("bl", frame[0])
elif c == 4:
heatmap.setCoordinate("br", frame[0])
except IOError: pass
except Exception as e:
logger.warning(str(e))
logger.warning("received %s", output)
finally:
termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)
# thanks to https://stackoverflow.com/a/4417735
def execute(cmd):
popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True)
for stdout_line in iter(popen.stdout.readline, ""):
yield stdout_line
popen.stdout.close()
return_code = popen.wait()
if return_code:
raise subprocess.CalledProcessError(return_code, cmd)
def create_perspective_transform_matrix(src, dst):
""" Creates a perspective transformation matrix which transforms points
in quadrilateral ``src`` to the corresponding points on quadrilateral
``dst``.
Will raise a ``np.linalg.LinAlgError`` on invalid input.
"""
# See:
# * http://xenia.media.mit.edu/~cwren/interpolator/
# * http://stackoverflow.com/a/14178717/71522
in_matrix = []
for (x, y), (X, Y) in zip(src, dst):
in_matrix.extend([
[x, y, 1, 0, 0, 0, -X * x, -X * y],
[0, 0, 0, x, y, 1, -Y * x, -Y * y],
])
A = np.matrix(in_matrix, dtype=np.float)
B = np.array(dst).reshape(8)
af = np.dot(np.linalg.inv(A.T * A) * A.T, B)
m = np.append(np.array(af).reshape(8), 1).reshape((3, 3))
logging.getLogger(__name__).info("Created transformmatrix: src %s dst %s m %s", src, dst, m)
return m
# got this amazing thing from here: https://stackoverflow.com/a/24088499
def create_perspective_transform(src, dst, round=False, splat_args=False):
""" Returns a function which will transform points in quadrilateral
``src`` to the corresponding points on quadrilateral ``dst``::
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... )
>>> transform((5, 5))
(74.99999999999639, 74.999999999999957)
If ``round`` is ``True`` then points will be rounded to the nearest
integer and integer values will be returned.
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... round=True,
... )
>>> transform((5, 5))
(75, 75)
If ``splat_args`` is ``True`` the function will accept two arguments
instead of a tuple.
>>> transform = create_perspective_transform(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... [(50, 50), (100, 50), (100, 100), (50, 100)],
... splat_args=True,
... )
>>> transform(5, 5)
(74.99999999999639, 74.999999999999957)
If the input values yield an invalid transformation matrix an identity
function will be returned and the ``error`` attribute will be set to a
description of the error::
>>> tranform = create_perspective_transform(
... np.zeros((4, 2)),
... np.zeros((4, 2)),
... )
>>> transform((5, 5))
(5.0, 5.0)
>>> transform.error
'invalid input quads (...): Singular matrix
"""
try:
transform_matrix = create_perspective_transform_matrix(src, dst)
error = None
except np.linalg.LinAlgError as e:
transform_matrix = np.identity(3, dtype=np.float)
error = "invalid input quads (%s and %s): %s" %(src, dst, e)
error = error.replace("\n", "")
to_eval = "def perspective_transform(%s):\n" %(
splat_args and "*pt" or "pt",
)
to_eval += " res = np.dot(transform_matrix, ((pt[0], ), (pt[1], ), (1, )))\n"
to_eval += " res = res / res[2]\n"
if round:
to_eval += " return (int(round(res[0][0])), int(round(res[1][0])))\n"
else:
to_eval += " return (res[0][0], res[1][0])\n"
locals = {
"transform_matrix": transform_matrix,
}
locals.update(globals())
exec to_eval in locals, locals
res = locals["perspective_transform"]
res.matrix = transform_matrix
res.error = error
return res
def coordinatesToSrc(coordinates):
return np.array([coordinates['tl'], coordinates['tr'],coordinates['bl'], coordinates['br']])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='launch modified OpenFace instance & create heatmap.')
parser.add_argument('--of', default="../build/bin/FaceLandmarkVidMulti", help='The modified version of OpenFace\'s FaceLandmarkVidMulti')
parser.add_argument('--coordinates', default="coordinates.p", help='Use a specific coordinates.p file')
parser.add_argument('--device', type=int, default=0, help='Webcam device nr. to use')
args = parser.parse_args()
main(openface_exec=args.of, coordinates_filename=args.coordinates, device=args.device)