738 lines
25 KiB
C++
738 lines
25 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
||
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
||
// all rights reserved.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
||
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
||
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
||
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
// POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
||
// of the Software may be covered by so-called “open source” software licenses (“Open Source
|
||
// Components”), which means any software licenses approved as open source licenses by the
|
||
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
||
// license that, as a condition of distribution of the software licensed under such license,
|
||
// requires that the distributor make the software available in source code format. Licensor shall
|
||
// provide a list of Open Source Components for a particular version of the Software upon
|
||
// Licensee’s request. Licensee will comply with the applicable terms of such licenses and to
|
||
// the extent required by the licenses covering Open Source Components, the terms of such
|
||
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
||
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
||
// License Agreement with respect to such Open Source Component, such restrictions will not
|
||
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
||
// Open Source Components require Licensor to make an offer to provide source code or
|
||
// related information in connection with the Software, such offer is hereby made. Any request
|
||
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
||
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
||
// delivery of the Software.
|
||
|
||
// * Any publications arising from the use of this software, including but
|
||
// not limited to academic journal and conference publications, technical
|
||
// reports and manuals, must cite at least one of the following works:
|
||
//
|
||
// OpenFace: an open source facial behavior analysis toolkit
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
||
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
||
//
|
||
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
||
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
||
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
||
//
|
||
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
||
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
||
// in Facial Expression Recognition and Analysis Challenge,
|
||
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
||
//
|
||
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
||
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
||
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
||
//
|
||
///////////////////////////////////////////////////////////////////////////////
|
||
|
||
#include "stdafx.h"
|
||
|
||
#include <PDM.h>
|
||
|
||
// OpenCV include
|
||
#include <opencv2/core/core.hpp>
|
||
#include <opencv2/imgproc.hpp>
|
||
|
||
// Math includes
|
||
#define _USE_MATH_DEFINES
|
||
#include <cmath>
|
||
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265358979323846
|
||
#endif
|
||
|
||
#include <LandmarkDetectorUtils.h>
|
||
|
||
using namespace LandmarkDetector;
|
||
//===========================================================================
|
||
|
||
//=============================================================================
|
||
// Orthonormalising the 3x3 rotation matrix
|
||
void Orthonormalise(cv::Matx33d &R)
|
||
{
|
||
|
||
cv::SVD svd(R,cv::SVD::MODIFY_A);
|
||
|
||
// get the orthogonal matrix from the initial rotation matrix
|
||
cv::Mat_<double> X = svd.u*svd.vt;
|
||
|
||
// This makes sure that the handedness is preserved and no reflection happened
|
||
// by making sure the determinant is 1 and not -1
|
||
cv::Mat_<double> W = cv::Mat_<double>::eye(3,3);
|
||
double d = determinant(X);
|
||
W(2,2) = determinant(X);
|
||
cv::Mat Rt = svd.u*W*svd.vt;
|
||
|
||
Rt.copyTo(R);
|
||
|
||
}
|
||
|
||
// A copy constructor
|
||
PDM::PDM(const PDM& other) {
|
||
|
||
// Make sure the matrices are allocated properly
|
||
this->mean_shape = other.mean_shape.clone();
|
||
this->princ_comp = other.princ_comp.clone();
|
||
this->eigen_values = other.eigen_values.clone();
|
||
}
|
||
|
||
//===========================================================================
|
||
// Clamping the parameter values to be within 3 standard deviations
|
||
void PDM::Clamp(cv::Mat_<float>& local_params, cv::Vec6d& params_global, const FaceModelParameters& parameters)
|
||
{
|
||
double n_sigmas = 3;
|
||
cv::MatConstIterator_<double> e_it = this->eigen_values.begin();
|
||
cv::MatIterator_<float> p_it = local_params.begin();
|
||
|
||
double v;
|
||
|
||
// go over all parameters
|
||
for(; p_it != local_params.end(); ++p_it, ++e_it)
|
||
{
|
||
// Work out the maximum value
|
||
v = n_sigmas*sqrt(*e_it);
|
||
|
||
// if the values is too extreme clamp it
|
||
if(fabs(*p_it) > v)
|
||
{
|
||
// Dealing with positive and negative cases
|
||
if(*p_it > 0.0)
|
||
{
|
||
*p_it=v;
|
||
}
|
||
else
|
||
{
|
||
*p_it=-v;
|
||
}
|
||
}
|
||
}
|
||
|
||
// do not let the pose get out of hand
|
||
if(parameters.limit_pose)
|
||
{
|
||
if(params_global[1] > M_PI / 2)
|
||
params_global[1] = M_PI/2;
|
||
if(params_global[1] < -M_PI / 2)
|
||
params_global[1] = -M_PI/2;
|
||
if(params_global[2] > M_PI / 2)
|
||
params_global[2] = M_PI/2;
|
||
if(params_global[2] < -M_PI / 2)
|
||
params_global[2] = -M_PI/2;
|
||
if(params_global[3] > M_PI / 2)
|
||
params_global[3] = M_PI/2;
|
||
if(params_global[3] < -M_PI / 2)
|
||
params_global[3] = -M_PI/2;
|
||
}
|
||
|
||
|
||
}
|
||
//===========================================================================
|
||
// Compute the 3D representation of shape (in object space) using the local parameters
|
||
void PDM::CalcShape3D(cv::Mat_<double>& out_shape, const cv::Mat_<double>& p_local) const
|
||
{
|
||
out_shape.create(mean_shape.rows, mean_shape.cols);
|
||
out_shape = mean_shape + princ_comp*p_local;
|
||
}
|
||
|
||
//===========================================================================
|
||
// Get the 2D shape (in image space) from global and local parameters
|
||
void PDM::CalcShape2D(cv::Mat_<double>& out_shape, const cv::Mat_<double>& params_local, const cv::Vec6d& params_global) const
|
||
{
|
||
|
||
int n = this->NumberOfPoints();
|
||
|
||
double s = params_global[0]; // scaling factor
|
||
double tx = params_global[4]; // x offset
|
||
double ty = params_global[5]; // y offset
|
||
|
||
// get the rotation matrix from the euler angles
|
||
cv::Vec3d euler(params_global[1], params_global[2], params_global[3]);
|
||
cv::Matx33d currRot = Euler2RotationMatrix(euler);
|
||
|
||
// get the 3D shape of the object
|
||
cv::Mat_<double> Shape_3D = mean_shape + princ_comp * params_local;
|
||
|
||
// create the 2D shape matrix (if it has not been defined yet)
|
||
if((out_shape.rows != mean_shape.rows) || (out_shape.cols != 1))
|
||
{
|
||
out_shape.create(2*n,1);
|
||
}
|
||
// for every vertex
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
// Transform this using the weak-perspective mapping to 2D from 3D
|
||
out_shape.at<double>(i ,0) = s * ( currRot(0,0) * Shape_3D.at<double>(i, 0) + currRot(0,1) * Shape_3D.at<double>(i+n ,0) + currRot(0,2) * Shape_3D.at<double>(i+n*2,0) ) + tx;
|
||
out_shape.at<double>(i+n,0) = s * ( currRot(1,0) * Shape_3D.at<double>(i, 0) + currRot(1,1) * Shape_3D.at<double>(i+n ,0) + currRot(1,2) * Shape_3D.at<double>(i+n*2,0) ) + ty;
|
||
}
|
||
}
|
||
|
||
//===========================================================================
|
||
// provided the bounding box of a face and the local parameters (with optional rotation), generates the global parameters that can generate the face with the provided bounding box
|
||
// This all assumes that the bounding box describes face from left outline to right outline of the face and chin to eyebrows
|
||
void PDM::CalcParams(cv::Vec6d& out_params_global, const cv::Rect_<double>& bounding_box, const cv::Mat_<double>& params_local, const cv::Vec3d rotation)
|
||
{
|
||
|
||
// get the shape instance based on local params
|
||
cv::Mat_<double> current_shape(mean_shape.size());
|
||
|
||
CalcShape3D(current_shape, params_local);
|
||
|
||
// rotate the shape
|
||
cv::Matx33d rotation_matrix = Euler2RotationMatrix(rotation);
|
||
|
||
cv::Mat_<double> reshaped = current_shape.reshape(1, 3);
|
||
|
||
cv::Mat rotated_shape = (cv::Mat(rotation_matrix) * reshaped);
|
||
|
||
// Get the width of expected shape
|
||
double min_x;
|
||
double max_x;
|
||
cv::minMaxLoc(rotated_shape.row(0), &min_x, &max_x);
|
||
|
||
double min_y;
|
||
double max_y;
|
||
cv::minMaxLoc(rotated_shape.row(1), &min_y, &max_y);
|
||
|
||
double width = abs(min_x - max_x);
|
||
double height = abs(min_y - max_y);
|
||
|
||
double scaling = ((bounding_box.width / width) + (bounding_box.height / height)) / 2;
|
||
|
||
// The estimate of face center also needs some correction
|
||
double tx = bounding_box.x + bounding_box.width / 2;
|
||
double ty = bounding_box.y + bounding_box.height / 2;
|
||
|
||
// Correct it so that the bounding box is just around the minimum and maximum point in the initialised face
|
||
tx = tx - scaling * (min_x + max_x)/2;
|
||
ty = ty - scaling * (min_y + max_y)/2;
|
||
|
||
out_params_global = cv::Vec6d(scaling, rotation[0], rotation[1], rotation[2], tx, ty);
|
||
}
|
||
|
||
//===========================================================================
|
||
// provided the model parameters, compute the bounding box of a face
|
||
// The bounding box describes face from left outline to right outline of the face and chin to eyebrows
|
||
void PDM::CalcBoundingBox(cv::Rect& out_bounding_box, const cv::Vec6d& params_global, const cv::Mat_<double>& params_local)
|
||
{
|
||
|
||
// get the shape instance based on local params
|
||
cv::Mat_<double> current_shape;
|
||
CalcShape2D(current_shape, params_local, params_global);
|
||
|
||
// Get the width of expected shape
|
||
double min_x;
|
||
double max_x;
|
||
cv::minMaxLoc(current_shape(cv::Rect(0, 0, 1, this->NumberOfPoints())), &min_x, &max_x);
|
||
|
||
double min_y;
|
||
double max_y;
|
||
cv::minMaxLoc(current_shape(cv::Rect(0, this->NumberOfPoints(), 1, this->NumberOfPoints())), &min_y, &max_y);
|
||
|
||
double width = abs(min_x - max_x);
|
||
double height = abs(min_y - max_y);
|
||
|
||
out_bounding_box = cv::Rect((int)min_x, (int)min_y, (int)width, (int)height);
|
||
}
|
||
|
||
//===========================================================================
|
||
// Calculate the PDM's Jacobian over rigid parameters (rotation, translation and scaling), the additional input W represents trust for each of the landmarks and is part of Non-Uniform RLMS
|
||
void PDM::ComputeRigidJacobian(const cv::Mat_<float>& p_local, const cv::Vec6d& params_global, cv::Mat_<float> &Jacob, const cv::Mat_<float> W, cv::Mat_<float> &Jacob_t_w)
|
||
{
|
||
|
||
// number of verts
|
||
int n = this->NumberOfPoints();
|
||
|
||
Jacob.create(n * 2, 6);
|
||
|
||
float X,Y,Z;
|
||
|
||
float s = (float)params_global[0];
|
||
|
||
cv::Mat_<double> shape_3D_d;
|
||
cv::Mat_<double> p_local_d;
|
||
p_local.convertTo(p_local_d, CV_64F);
|
||
this->CalcShape3D(shape_3D_d, p_local_d);
|
||
|
||
cv::Mat_<float> shape_3D;
|
||
shape_3D_d.convertTo(shape_3D, CV_32F);
|
||
|
||
// Get the rotation matrix
|
||
cv::Vec3d euler(params_global[1], params_global[2], params_global[3]);
|
||
cv::Matx33d currRot = Euler2RotationMatrix(euler);
|
||
|
||
float r11 = (float) currRot(0,0);
|
||
float r12 = (float) currRot(0,1);
|
||
float r13 = (float) currRot(0,2);
|
||
float r21 = (float) currRot(1,0);
|
||
float r22 = (float) currRot(1,1);
|
||
float r23 = (float) currRot(1,2);
|
||
float r31 = (float) currRot(2,0);
|
||
float r32 = (float) currRot(2,1);
|
||
float r33 = (float) currRot(2,2);
|
||
|
||
cv::MatIterator_<float> Jx = Jacob.begin();
|
||
cv::MatIterator_<float> Jy = Jx + n * 6;
|
||
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
|
||
X = shape_3D.at<float>(i,0);
|
||
Y = shape_3D.at<float>(i+n,0);
|
||
Z = shape_3D.at<float>(i+n*2,0);
|
||
|
||
// The rigid jacobian from the axis angle rotation matrix approximation using small angle assumption (R * R')
|
||
// where R' = [1, -wz, wy
|
||
// wz, 1, -wx
|
||
// -wy, wx, 1]
|
||
// And this is derived using the small angle assumption on the axis angle rotation matrix parametrisation
|
||
|
||
// scaling term
|
||
*Jx++ = (X * r11 + Y * r12 + Z * r13);
|
||
*Jy++ = (X * r21 + Y * r22 + Z * r23);
|
||
|
||
// rotation terms
|
||
*Jx++ = (s * (Y * r13 - Z * r12) );
|
||
*Jy++ = (s * (Y * r23 - Z * r22) );
|
||
*Jx++ = (-s * (X * r13 - Z * r11));
|
||
*Jy++ = (-s * (X * r23 - Z * r21));
|
||
*Jx++ = (s * (X * r12 - Y * r11) );
|
||
*Jy++ = (s * (X * r22 - Y * r21) );
|
||
|
||
// translation terms
|
||
*Jx++ = 1.0f;
|
||
*Jy++ = 0.0f;
|
||
*Jx++ = 0.0f;
|
||
*Jy++ = 1.0f;
|
||
|
||
}
|
||
|
||
cv::Mat Jacob_w = cv::Mat::zeros(Jacob.rows, Jacob.cols, Jacob.type());
|
||
|
||
Jx = Jacob.begin();
|
||
Jy = Jx + n*6;
|
||
|
||
cv::MatIterator_<float> Jx_w = Jacob_w.begin<float>();
|
||
cv::MatIterator_<float> Jy_w = Jx_w + n*6;
|
||
|
||
// Iterate over all Jacobian values and multiply them by the weight in diagonal of W
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
float w_x = W.at<float>(i, i);
|
||
float w_y = W.at<float>(i+n, i+n);
|
||
|
||
for(int j = 0; j < Jacob.cols; ++j)
|
||
{
|
||
*Jx_w++ = *Jx++ * w_x;
|
||
*Jy_w++ = *Jy++ * w_y;
|
||
}
|
||
}
|
||
|
||
Jacob_t_w = Jacob_w.t();
|
||
}
|
||
|
||
//===========================================================================
|
||
// Calculate the PDM's Jacobian over all parameters (rigid and non-rigid), the additional input W represents trust for each of the landmarks and is part of Non-Uniform RLMS
|
||
void PDM::ComputeJacobian(const cv::Mat_<float>& params_local, const cv::Vec6d& params_global, cv::Mat_<float> &Jacobian, const cv::Mat_<float> W, cv::Mat_<float> &Jacob_t_w)
|
||
{
|
||
|
||
// number of vertices
|
||
int n = this->NumberOfPoints();
|
||
|
||
// number of non-rigid parameters
|
||
int m = this->NumberOfModes();
|
||
|
||
Jacobian.create(n * 2, 6 + m);
|
||
|
||
float X,Y,Z;
|
||
|
||
float s = (float) params_global[0];
|
||
|
||
cv::Mat_<double> shape_3D_d;
|
||
cv::Mat_<double> p_local_d;
|
||
params_local.convertTo(p_local_d, CV_64F);
|
||
this->CalcShape3D(shape_3D_d, p_local_d);
|
||
|
||
cv::Mat_<float> shape_3D;
|
||
shape_3D_d.convertTo(shape_3D, CV_32F);
|
||
|
||
cv::Vec3d euler(params_global[1], params_global[2], params_global[3]);
|
||
cv::Matx33d currRot = Euler2RotationMatrix(euler);
|
||
|
||
float r11 = (float) currRot(0,0);
|
||
float r12 = (float) currRot(0,1);
|
||
float r13 = (float) currRot(0,2);
|
||
float r21 = (float) currRot(1,0);
|
||
float r22 = (float) currRot(1,1);
|
||
float r23 = (float) currRot(1,2);
|
||
float r31 = (float) currRot(2,0);
|
||
float r32 = (float) currRot(2,1);
|
||
float r33 = (float) currRot(2,2);
|
||
|
||
cv::MatIterator_<float> Jx = Jacobian.begin();
|
||
cv::MatIterator_<float> Jy = Jx + n * (6 + m);
|
||
cv::MatConstIterator_<double> Vx = this->princ_comp.begin();
|
||
cv::MatConstIterator_<double> Vy = Vx + n*m;
|
||
cv::MatConstIterator_<double> Vz = Vy + n*m;
|
||
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
|
||
X = shape_3D.at<float>(i,0);
|
||
Y = shape_3D.at<float>(i+n,0);
|
||
Z = shape_3D.at<float>(i+n*2,0);
|
||
|
||
// The rigid jacobian from the axis angle rotation matrix approximation using small angle assumption (R * R')
|
||
// where R' = [1, -wz, wy
|
||
// wz, 1, -wx
|
||
// -wy, wx, 1]
|
||
// And this is derived using the small angle assumption on the axis angle rotation matrix parametrisation
|
||
|
||
// scaling term
|
||
*Jx++ = (X * r11 + Y * r12 + Z * r13);
|
||
*Jy++ = (X * r21 + Y * r22 + Z * r23);
|
||
|
||
// rotation terms
|
||
*Jx++ = (s * (Y * r13 - Z * r12) );
|
||
*Jy++ = (s * (Y * r23 - Z * r22) );
|
||
*Jx++ = (-s * (X * r13 - Z * r11));
|
||
*Jy++ = (-s * (X * r23 - Z * r21));
|
||
*Jx++ = (s * (X * r12 - Y * r11) );
|
||
*Jy++ = (s * (X * r22 - Y * r21) );
|
||
|
||
// translation terms
|
||
*Jx++ = 1.0f;
|
||
*Jy++ = 0.0f;
|
||
*Jx++ = 0.0f;
|
||
*Jy++ = 1.0f;
|
||
|
||
for(int j = 0; j < m; j++,++Vx,++Vy,++Vz)
|
||
{
|
||
// How much the change of the non-rigid parameters (when object is rotated) affect 2D motion
|
||
*Jx++ = (float) ( s*(r11*(*Vx) + r12*(*Vy) + r13*(*Vz)) );
|
||
*Jy++ = (float) ( s*(r21*(*Vx) + r22*(*Vy) + r23*(*Vz)) );
|
||
}
|
||
}
|
||
|
||
// Adding the weights here
|
||
cv::Mat Jacob_w = Jacobian.clone();
|
||
|
||
if(cv::trace(W)[0] != W.rows)
|
||
{
|
||
Jx = Jacobian.begin();
|
||
Jy = Jx + n*(6+m);
|
||
|
||
cv::MatIterator_<float> Jx_w = Jacob_w.begin<float>();
|
||
cv::MatIterator_<float> Jy_w = Jx_w + n*(6+m);
|
||
|
||
// Iterate over all Jacobian values and multiply them by the weight in diagonal of W
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
float w_x = W.at<float>(i, i);
|
||
float w_y = W.at<float>(i+n, i+n);
|
||
|
||
for(int j = 0; j < Jacobian.cols; ++j)
|
||
{
|
||
*Jx_w++ = *Jx++ * w_x;
|
||
*Jy_w++ = *Jy++ * w_y;
|
||
}
|
||
}
|
||
}
|
||
Jacob_t_w = Jacob_w.t();
|
||
|
||
}
|
||
|
||
//===========================================================================
|
||
// Updating the parameters (more details in my thesis)
|
||
void PDM::UpdateModelParameters(const cv::Mat_<float>& delta_p, cv::Mat_<float>& params_local, cv::Vec6d& params_global)
|
||
{
|
||
|
||
// The scaling and translation parameters can be just added
|
||
params_global[0] += (double)delta_p.at<float>(0,0);
|
||
params_global[4] += (double)delta_p.at<float>(4,0);
|
||
params_global[5] += (double)delta_p.at<float>(5,0);
|
||
|
||
// get the original rotation matrix
|
||
cv::Vec3d eulerGlobal(params_global[1], params_global[2], params_global[3]);
|
||
cv::Matx33d R1 = Euler2RotationMatrix(eulerGlobal);
|
||
|
||
// construct R' = [1, -wz, wy
|
||
// wz, 1, -wx
|
||
// -wy, wx, 1]
|
||
cv::Matx33d R2 = cv::Matx33d::eye();
|
||
|
||
R2(1,2) = -1.0*(R2(2,1) = (double)delta_p.at<float>(1,0));
|
||
R2(2,0) = -1.0*(R2(0,2) = (double)delta_p.at<float>(2,0));
|
||
R2(0,1) = -1.0*(R2(1,0) = (double)delta_p.at<float>(3,0));
|
||
|
||
// Make sure it's orthonormal
|
||
Orthonormalise(R2);
|
||
|
||
// Combine rotations
|
||
cv::Matx33d R3 = R1 *R2;
|
||
|
||
// Extract euler angle (through axis angle first to make sure it's legal)
|
||
cv::Vec3d axis_angle = RotationMatrix2AxisAngle(R3);
|
||
cv::Vec3d euler = AxisAngle2Euler(axis_angle);
|
||
|
||
params_global[1] = euler[0];
|
||
params_global[2] = euler[1];
|
||
params_global[3] = euler[2];
|
||
|
||
// Local parameter update, just simple addition
|
||
if(delta_p.rows > 6)
|
||
{
|
||
params_local = params_local + delta_p(cv::Rect(0,6,1, this->NumberOfModes()));
|
||
}
|
||
|
||
}
|
||
|
||
void PDM::CalcParams(cv::Vec6d& out_params_global, const cv::Mat_<double>& out_params_local, const cv::Mat_<double>& landmark_locations, const cv::Vec3d rotation)
|
||
{
|
||
|
||
int m = this->NumberOfModes();
|
||
int n = this->NumberOfPoints();
|
||
|
||
cv::Mat_<int> visi_ind_2D(n * 2, 1, 1);
|
||
cv::Mat_<int> visi_ind_3D(3 * n , 1, 1);
|
||
|
||
for(int i = 0; i < n; ++i)
|
||
{
|
||
// If the landmark is invisible indicate this
|
||
if(landmark_locations.at<double>(i) == 0)
|
||
{
|
||
visi_ind_2D.at<int>(i) = 0;
|
||
visi_ind_2D.at<int>(i+n) = 0;
|
||
visi_ind_3D.at<int>(i) = 0;
|
||
visi_ind_3D.at<int>(i+n) = 0;
|
||
visi_ind_3D.at<int>(i+2*n) = 0;
|
||
}
|
||
}
|
||
|
||
// As this might be subsampled have special versions
|
||
cv::Mat_<double> M(0, mean_shape.cols, 0.0);
|
||
cv::Mat_<double> V(0, princ_comp.cols, 0.0);
|
||
|
||
for(int i = 0; i < n * 3; ++i)
|
||
{
|
||
if(visi_ind_3D.at<int>(i) == 1)
|
||
{
|
||
cv::vconcat(M, this->mean_shape.row(i), M);
|
||
cv::vconcat(V, this->princ_comp.row(i), V);
|
||
}
|
||
}
|
||
|
||
cv::Mat_<double> m_old = this->mean_shape.clone();
|
||
cv::Mat_<double> v_old = this->princ_comp.clone();
|
||
|
||
this->mean_shape = M;
|
||
this->princ_comp = V;
|
||
|
||
// The new number of points
|
||
n = M.rows / 3;
|
||
|
||
// Extract the relevant landmark locations
|
||
cv::Mat_<double> landmark_locs_vis(n*2, 1, 0.0);
|
||
int k = 0;
|
||
for(int i = 0; i < visi_ind_2D.rows; ++i)
|
||
{
|
||
if(visi_ind_2D.at<int>(i) == 1)
|
||
{
|
||
landmark_locs_vis.at<double>(k) = landmark_locations.at<double>(i);
|
||
k++;
|
||
}
|
||
}
|
||
|
||
// Compute the initial global parameters
|
||
double min_x;
|
||
double max_x;
|
||
cv::minMaxLoc(landmark_locations(cv::Rect(0, 0, 1, this->NumberOfPoints())), &min_x, &max_x);
|
||
|
||
double min_y;
|
||
double max_y;
|
||
cv::minMaxLoc(landmark_locations(cv::Rect(0, this->NumberOfPoints(), 1, this->NumberOfPoints())), &min_y, &max_y);
|
||
|
||
double width = abs(min_x - max_x);
|
||
double height = abs(min_y - max_y);
|
||
|
||
cv::Rect model_bbox;
|
||
CalcBoundingBox(model_bbox, cv::Vec6d(1.0, 0.0, 0.0, 0.0, 0.0, 0.0), cv::Mat_<double>(this->NumberOfModes(), 1, 0.0));
|
||
|
||
cv::Rect bbox((int)min_x, (int)min_y, (int)width, (int)height);
|
||
|
||
double scaling = ((width / model_bbox.width) + (height / model_bbox.height)) / 2;
|
||
|
||
cv::Vec3d rotation_init = rotation;
|
||
cv::Matx33d R = Euler2RotationMatrix(rotation_init);
|
||
cv::Vec2d translation((min_x + max_x) / 2.0, (min_y + max_y) / 2.0);
|
||
|
||
cv::Mat_<float> loc_params(this->NumberOfModes(),1, 0.0);
|
||
cv::Vec6d glob_params(scaling, rotation_init[0], rotation_init[1], rotation_init[2], translation[0], translation[1]);
|
||
|
||
// get the 3D shape of the object
|
||
cv::Mat_<double> loc_params_d;
|
||
loc_params.convertTo(loc_params_d, CV_64F);
|
||
cv::Mat_<double> shape_3D = M + V * loc_params_d;
|
||
|
||
cv::Mat_<double> curr_shape(2*n, 1);
|
||
|
||
// for every vertex
|
||
for(int i = 0; i < n; i++)
|
||
{
|
||
// Transform this using the weak-perspective mapping to 2D from 3D
|
||
curr_shape.at<double>(i ,0) = scaling * ( R(0,0) * shape_3D.at<double>(i, 0) + R(0,1) * shape_3D.at<double>(i+n ,0) + R(0,2) * shape_3D.at<double>(i+n*2,0) ) + translation[0];
|
||
curr_shape.at<double>(i+n,0) = scaling * ( R(1,0) * shape_3D.at<double>(i, 0) + R(1,1) * shape_3D.at<double>(i+n ,0) + R(1,2) * shape_3D.at<double>(i+n*2,0) ) + translation[1];
|
||
}
|
||
|
||
double currError = cv::norm(curr_shape - landmark_locs_vis);
|
||
|
||
cv::Mat_<float> regularisations = cv::Mat_<double>::zeros(1, 6 + m);
|
||
|
||
double reg_factor = 1;
|
||
|
||
// Setting the regularisation to the inverse of eigenvalues
|
||
cv::Mat(reg_factor / this->eigen_values).copyTo(regularisations(cv::Rect(6, 0, m, 1)));
|
||
cv::Mat_<double> regTerm_d = cv::Mat::diag(regularisations.t());
|
||
regTerm_d.convertTo(regularisations, CV_32F);
|
||
|
||
cv::Mat_<float> WeightMatrix = cv::Mat_<float>::eye(n*2, n*2);
|
||
|
||
int not_improved_in = 0;
|
||
|
||
for (size_t i = 0; i < 1000; ++i)
|
||
{
|
||
// get the 3D shape of the object
|
||
cv::Mat_<double> loc_params_d;
|
||
loc_params.convertTo(loc_params_d, CV_64F);
|
||
shape_3D = M + V * loc_params_d;
|
||
|
||
shape_3D = shape_3D.reshape(1, 3);
|
||
|
||
cv::Matx23d R_2D(R(0,0), R(0,1), R(0,2), R(1,0), R(1,1), R(1,2));
|
||
|
||
cv::Mat_<double> curr_shape_2D = scaling * shape_3D.t() * cv::Mat(R_2D).t();
|
||
curr_shape_2D.col(0) = curr_shape_2D.col(0) + translation(0);
|
||
curr_shape_2D.col(1) = curr_shape_2D.col(1) + translation(1);
|
||
|
||
curr_shape_2D = cv::Mat(curr_shape_2D.t()).reshape(1, n * 2);
|
||
|
||
cv::Mat_<float> error_resid;
|
||
cv::Mat(landmark_locs_vis - curr_shape_2D).convertTo(error_resid, CV_32F);
|
||
|
||
cv::Mat_<float> J, J_w_t;
|
||
this->ComputeJacobian(loc_params, glob_params, J, WeightMatrix, J_w_t);
|
||
|
||
// projection of the meanshifts onto the jacobians (using the weighted Jacobian, see Baltrusaitis 2013)
|
||
cv::Mat_<float> J_w_t_m = J_w_t * error_resid;
|
||
|
||
// Add the regularisation term
|
||
J_w_t_m(cv::Rect(0,6,1, m)) = J_w_t_m(cv::Rect(0,6,1, m)) - regularisations(cv::Rect(6,6, m, m)) * loc_params;
|
||
|
||
cv::Mat_<float> Hessian = J_w_t * J;
|
||
|
||
// Add the Tikhonov regularisation
|
||
Hessian = Hessian + regularisations;
|
||
|
||
// Solve for the parameter update (from Baltrusaitis 2013 based on eq (36) Saragih 2011)
|
||
cv::Mat_<float> param_update;
|
||
cv::solve(Hessian, J_w_t_m, param_update, CV_CHOLESKY);
|
||
|
||
// To not overshoot, have the gradient decent rate a bit smaller
|
||
param_update = 0.5 * param_update;
|
||
|
||
UpdateModelParameters(param_update, loc_params, glob_params);
|
||
|
||
scaling = glob_params[0];
|
||
rotation_init[0] = glob_params[1];
|
||
rotation_init[1] = glob_params[2];
|
||
rotation_init[2] = glob_params[3];
|
||
|
||
translation[0] = glob_params[4];
|
||
translation[1] = glob_params[5];
|
||
|
||
R = Euler2RotationMatrix(rotation_init);
|
||
|
||
R_2D(0,0) = R(0,0);R_2D(0,1) = R(0,1); R_2D(0,2) = R(0,2);
|
||
R_2D(1,0) = R(1,0);R_2D(1,1) = R(1,1); R_2D(1,2) = R(1,2);
|
||
|
||
curr_shape_2D = scaling * shape_3D.t() * cv::Mat(R_2D).t();
|
||
curr_shape_2D.col(0) = curr_shape_2D.col(0) + translation(0);
|
||
curr_shape_2D.col(1) = curr_shape_2D.col(1) + translation(1);
|
||
|
||
curr_shape_2D = cv::Mat(curr_shape_2D.t()).reshape(1, n * 2);
|
||
|
||
double error = cv::norm(curr_shape_2D - landmark_locs_vis);
|
||
|
||
if(0.999 * currError < error)
|
||
{
|
||
not_improved_in++;
|
||
if (not_improved_in == 5)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
currError = error;
|
||
|
||
}
|
||
|
||
out_params_global = glob_params;
|
||
loc_params.convertTo(out_params_local, CV_64F);
|
||
|
||
this->mean_shape = m_old;
|
||
this->princ_comp = v_old;
|
||
|
||
|
||
}
|
||
|
||
void PDM::Read(string location)
|
||
{
|
||
|
||
ifstream pdmLoc(location, ios_base::in);
|
||
|
||
LandmarkDetector::SkipComments(pdmLoc);
|
||
|
||
// Reading mean values
|
||
LandmarkDetector::ReadMat(pdmLoc,mean_shape);
|
||
|
||
LandmarkDetector::SkipComments(pdmLoc);
|
||
|
||
// Reading principal components
|
||
LandmarkDetector::ReadMat(pdmLoc,princ_comp);
|
||
|
||
LandmarkDetector::SkipComments(pdmLoc);
|
||
|
||
// Reading eigenvalues
|
||
LandmarkDetector::ReadMat(pdmLoc,eigen_values);
|
||
|
||
}
|