sustaining_gazes/lib/local/LandmarkDetector/src/SVR_patch_expert.cpp
2016-04-28 15:40:36 -04:00

361 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "SVR_patch_expert.h"
// OpenCV include
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
#include "LandmarkDetectorUtils.h"
using namespace LandmarkDetector;
//===========================================================================
// Computing the image gradient
void Grad(const cv::Mat& im, cv::Mat& grad)
{
/*float filter[3] = {1, 0, -1};
float dfilter[1] = {1};
cv::Mat filterX = cv::Mat(1,3,CV_32F, filter).clone();
cv::Mat filterY = cv::Mat(1,1,CV_32F, dfilter).clone();
cv::Mat gradX;
cv::Mat gradY;
cv::sepFilter2D(im, gradX, CV_32F, filterY, filterX, cv::Point(-1,-1), 0);
cv::sepFilter2D(im, gradY, CV_32F, filterX.t(), filterY, cv::Point(-1,-1), 0);
cv::pow(gradX,2, gradX);
cv::pow(gradY,2, gradY);
grad = gradX + gradY;
grad.row(0).setTo(0);
grad.col(0).setTo(0);
grad.col(grad.cols-1).setTo(0);
grad.row(grad.rows-1).setTo(0); */
// A quicker alternative
int x,y,h = im.rows,w = im.cols;
float vx,vy;
// Initialise the gradient
grad.create(im.size(), CV_32F);
grad.setTo(0.0f);
cv::MatIterator_<float> gp = grad.begin<float>() + w+1;
cv::MatConstIterator_<float> px1 = im.begin<float>() + w+2;
cv::MatConstIterator_<float> px2 = im.begin<float>() + w;
cv::MatConstIterator_<float> py1 = im.begin<float>() + 2*w+1;
cv::MatConstIterator_<float> py2 = im.begin<float>() + 1;
for(y = 1; y < h-1; y++)
{
for(x = 1; x < w-1; x++)
{
vx = *px1++ - *px2++;
vy = *py1++ - *py2++;
*gp++ = vx*vx + vy*vy;
}
px1 += 2;
px2 += 2;
py1 += 2;
py2 += 2;
gp += 2;
}
}
// A copy constructor
SVR_patch_expert::SVR_patch_expert(const SVR_patch_expert& other) : weights(other.weights.clone())
{
this->type = other.type;
this->scaling = other.scaling;
this->bias = other.bias;
this->confidence = other.confidence;
for (std::map<int, cv::Mat_<double> >::const_iterator it = other.weights_dfts.begin(); it != other.weights_dfts.end(); it++)
{
// Make sure the matrix is copied.
this->weights_dfts.insert(std::pair<int, cv::Mat>(it->first, it->second.clone()));
}
}
//===========================================================================
void SVR_patch_expert::Read(ifstream &stream)
{
// A sanity check when reading patch experts
int read_type;
stream >> read_type;
assert(read_type == 2);
stream >> type >> confidence >> scaling >> bias;
LandmarkDetector::ReadMat(stream, weights);
// OpenCV and Matlab matrix cardinality is different, hence the transpose
weights = weights.t();
}
//===========================================================================
void SVR_patch_expert::Response(const cv::Mat_<float>& area_of_interest, cv::Mat_<float>& response)
{
int response_height = area_of_interest.rows - weights.rows + 1;
int response_width = area_of_interest.cols - weights.cols + 1;
// the patch area on which we will calculate reponses
cv::Mat_<float> normalised_area_of_interest;
if(response.rows != response_height || response.cols != response_width)
{
response.create(response_height, response_width);
}
// If type is raw just normalise mean and standard deviation
if(type == 0)
{
// Perform normalisation across whole patch
cv::Scalar mean;
cv::Scalar std;
cv::meanStdDev(area_of_interest, mean, std);
// Avoid division by zero
if(std[0] == 0)
{
std[0] = 1;
}
normalised_area_of_interest = (area_of_interest - mean[0]) / std[0];
}
// If type is gradient, perform the image gradient computation
else if(type == 1)
{
Grad(area_of_interest, normalised_area_of_interest);
}
else
{
printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__, type);
abort();
}
cv::Mat_<float> svr_response;
// The empty matrix as we don't pass precomputed dft's of image
cv::Mat_<double> empty_matrix_0(0,0,0.0);
cv::Mat_<float> empty_matrix_1(0,0,0.0);
cv::Mat_<float> empty_matrix_2(0,0,0.0);
// Efficient calc of patch expert SVR response across the area of interest
matchTemplate_m(normalised_area_of_interest, empty_matrix_0, empty_matrix_1, empty_matrix_2, weights, weights_dfts, svr_response, CV_TM_CCOEFF_NORMED);
response.create(svr_response.size());
cv::MatIterator_<float> p = response.begin();
cv::MatIterator_<float> q1 = svr_response.begin(); // respone for each pixel
cv::MatIterator_<float> q2 = svr_response.end();
while(q1 != q2)
{
// the SVR response passed into logistic regressor
*p++ = 1.0/(1.0 + exp( -(*q1++ * scaling + bias )));
}
}
void SVR_patch_expert::ResponseDepth(const cv::Mat_<float>& area_of_interest, cv::Mat_<float> &response)
{
// How big the response map will be
int response_height = area_of_interest.rows - weights.rows + 1;
int response_width = area_of_interest.cols - weights.cols + 1;
// the patch area on which we will calculate reponses
cv::Mat_<float> normalised_area_of_interest;
if(response.rows != response_height || response.cols != response_width)
{
response.create(response_height, response_width);
}
if(type == 0)
{
// Perform normalisation across whole patch
cv::Scalar mean;
cv::Scalar std;
// ignore missing values
cv::Mat_<uchar> mask = area_of_interest > 0;
cv::meanStdDev(area_of_interest, mean, std, mask);
// if all values the same don't divide by 0
if(std[0] == 0)
{
std[0] = 1;
}
normalised_area_of_interest = (area_of_interest - mean[0]) / std[0];
// Set the invalid pixels to 0
normalised_area_of_interest.setTo(0, mask == 0);
}
else
{
printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__,type);
abort();
}
cv::Mat_<float> svr_response;
// The empty matrix as we don't pass precomputed dft's of image
cv::Mat_<double> empty_matrix_0(0,0,0.0);
cv::Mat_<float> empty_matrix_1(0,0,0.0);
cv::Mat_<float> empty_matrix_2(0,0,0.0);
// Efficient calc of patch expert response across the area of interest
matchTemplate_m(normalised_area_of_interest, empty_matrix_0, empty_matrix_1, empty_matrix_2, weights, weights_dfts, svr_response, CV_TM_CCOEFF);
response.create(svr_response.size());
cv::MatIterator_<float> p = response.begin();
cv::MatIterator_<float> q1 = svr_response.begin(); // respone for each pixel
cv::MatIterator_<float> q2 = svr_response.end();
while(q1 != q2)
{
// the SVR response passed through a logistic regressor
*p++ = 1.0/(1.0 + exp( -(*q1++ * scaling + bias )));
}
}
// Copy constructor
Multi_SVR_patch_expert::Multi_SVR_patch_expert(const Multi_SVR_patch_expert& other) : svr_patch_experts(other.svr_patch_experts)
{
this->width = other.width;
this->height = other.height;
}
//===========================================================================
void Multi_SVR_patch_expert::Read(ifstream &stream)
{
// A sanity check when reading patch experts
int type;
stream >> type;
assert(type == 3);
// The number of patch experts for this view (with different modalities)
int number_modalities;
stream >> width >> height >> number_modalities;
svr_patch_experts.resize(number_modalities);
for(int i = 0; i < number_modalities; i++)
svr_patch_experts[i].Read(stream);
}
//===========================================================================
void Multi_SVR_patch_expert::Response(const cv::Mat_<float> &area_of_interest, cv::Mat_<float> &response)
{
int response_height = area_of_interest.rows - height + 1;
int response_width = area_of_interest.cols - width + 1;
if(response.rows != response_height || response.cols != response_width)
{
response.create(response_height, response_width);
}
// For the purposes of the experiment only use the response of normal intensity, for fair comparison
if(svr_patch_experts.size() == 1)
{
svr_patch_experts[0].Response(area_of_interest, response);
}
else
{
// responses from multiple patch experts these can be gradients, LBPs etc.
response.setTo(1.0);
cv::Mat_<float> modality_resp(response_height, response_width);
for(size_t i = 0; i < svr_patch_experts.size(); i++)
{
svr_patch_experts[i].Response(area_of_interest, modality_resp);
response = response.mul(modality_resp);
}
}
}
void Multi_SVR_patch_expert::ResponseDepth(const cv::Mat_<float>& area_of_interest, cv::Mat_<float>& response)
{
int response_height = area_of_interest.rows - height + 1;
int response_width = area_of_interest.cols - width + 1;
if(response.rows != response_height || response.cols != response_width)
{
response.create(response_height, response_width);
}
// With depth patch experts only do raw data modality
svr_patch_experts[0].ResponseDepth(area_of_interest, response);
}
//===========================================================================