sustaining_gazes/lib/local/LandmarkDetector/src/PAW.cpp
2016-04-28 15:40:36 -04:00

525 lines
No EOL
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensees request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "PAW.h"
// OpenCV includes
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
#include "LandmarkDetectorUtils.h"
using namespace LandmarkDetector;
// Copy constructor
PAW::PAW(const PAW& other) : destination_landmarks(other.destination_landmarks.clone()), source_landmarks(other.source_landmarks.clone()), triangulation(other.triangulation.clone()),
triangle_id(other.triangle_id.clone()), pixel_mask(other.pixel_mask.clone()), coefficients(other.coefficients.clone()), alpha(other.alpha.clone()), beta(other.beta.clone()), map_x(other.map_x.clone()), map_y(other.map_y.clone())
{
this->number_of_pixels = other.number_of_pixels;
this->min_x = other.min_x;
this->min_y = other.min_y;
}
// A constructor from destination shape and triangulation
PAW::PAW(const cv::Mat_<double>& destination_shape, const cv::Mat_<int>& triangulation)
{
// Initialise some variables directly
this->destination_landmarks = destination_shape;
this->triangulation = triangulation;
int num_points = destination_shape.rows/2;
int num_tris = triangulation.rows;
// Pre-compute the rest
alpha = cv::Mat_<double>(num_tris, 3);
beta = cv::Mat_<double>(num_tris, 3);
cv::Mat_<double> xs = destination_shape(cv::Rect(0, 0, 1, num_points));
cv::Mat_<double> ys = destination_shape(cv::Rect(0, num_points, 1, num_points));
// Create a vector representation of the control points
vector<vector<double>> destination_points;
for (int tri = 0; tri < num_tris; ++tri)
{
int j = triangulation.at<int>(tri, 0);
int k = triangulation.at<int>(tri, 1);
int l = triangulation.at<int>(tri, 2);
double c1 = ys.at<double>(l) - ys.at<double>(j);
double c2 = xs.at<double>(l) - xs.at<double>(j);
double c4 = ys.at<double>(k) - ys.at<double>(j);
double c3 = xs.at<double>(k) - xs.at<double>(j);
double c5 = c3*c1 - c2*c4;
alpha.at<double>(tri, 0) = (ys.at<double>(j) * c2 - xs.at<double>(j) * c1) / c5;
alpha.at<double>(tri, 1) = c1/c5;
alpha.at<double>(tri, 2) = -c2/c5;
beta.at<double>(tri, 0) = (xs.at<double>(j) * c4 - ys.at<double>(j) * c3)/c5;
beta.at<double>(tri, 1) = -c4/c5;
beta.at<double>(tri, 2) = c3/c5;
// Add points corresponding to triangles as optimisation
vector<double> triangle_points(10);
triangle_points[0] = xs.at<double>(j);
triangle_points[1] = ys.at<double>(j);
triangle_points[2] = xs.at<double>(k);
triangle_points[3] = ys.at<double>(k);
triangle_points[4] = xs.at<double>(l);
triangle_points[5] = ys.at<double>(l);
cv::Vec3d xs_three(triangle_points[0], triangle_points[2], triangle_points[4]);
cv::Vec3d ys_three(triangle_points[1], triangle_points[3], triangle_points[5]);
double min_x, max_x, min_y, max_y;
cv::minMaxIdx(xs_three, &min_x, &max_x);
cv::minMaxIdx(ys_three, &min_y, &max_y);
triangle_points[6] = max_x;
triangle_points[7] = max_y;
triangle_points[8] = min_x;
triangle_points[9] = min_y;
destination_points.push_back(triangle_points);
}
double max_x;
double max_y;
minMaxLoc(xs, &min_x, &max_x);
minMaxLoc(ys, &min_y, &max_y);
int w = (int)(max_x - min_x + 1.5);
int h = (int)(max_y - min_y + 1.5);
// Round the min_x and min_y for simplicity?
pixel_mask = cv::Mat_<uchar>(h, w, (uchar)0);
triangle_id = cv::Mat_<int>(h, w, -1);
int curr_tri = -1;
for(int y = 0; y < pixel_mask.rows; y++)
{
for(int x = 0; x < pixel_mask.cols; x++)
{
curr_tri = findTriangle(cv::Point_<double>(x + min_x, y + min_y), destination_points, curr_tri);
// If there is a triangle at this location
if(curr_tri != -1)
{
triangle_id.at<int>(y, x) = curr_tri;
pixel_mask.at<uchar>(y, x) = 1;
}
}
}
// Preallocate maps and coefficients
coefficients.create(num_tris, 6);
map_x.create(pixel_mask.rows,pixel_mask.cols);
map_y.create(pixel_mask.rows,pixel_mask.cols);
}
// Manually define min and max values
PAW::PAW(const cv::Mat_<double>& destination_shape, const cv::Mat_<int>& triangulation, double in_min_x, double in_min_y, double in_max_x, double in_max_y)
{
// Initialise some variables directly
this->destination_landmarks = destination_shape;
this->triangulation = triangulation;
int num_points = destination_shape.rows/2;
int num_tris = triangulation.rows;
// Pre-compute the rest
alpha = cv::Mat_<double>(num_tris, 3);
beta = cv::Mat_<double>(num_tris, 3);
cv::Mat_<double> xs = destination_shape(cv::Rect(0, 0, 1, num_points));
cv::Mat_<double> ys = destination_shape(cv::Rect(0, num_points, 1, num_points));
// Create a vector representation of the control points
vector<vector<double>> destination_points;
for (int tri = 0; tri < num_tris; ++tri)
{
int j = triangulation.at<int>(tri, 0);
int k = triangulation.at<int>(tri, 1);
int l = triangulation.at<int>(tri, 2);
double c1 = ys.at<double>(l) - ys.at<double>(j);
double c2 = xs.at<double>(l) - xs.at<double>(j);
double c4 = ys.at<double>(k) - ys.at<double>(j);
double c3 = xs.at<double>(k) - xs.at<double>(j);
double c5 = c3*c1 - c2*c4;
alpha.at<double>(tri, 0) = (ys.at<double>(j) * c2 - xs.at<double>(j) * c1) / c5;
alpha.at<double>(tri, 1) = c1/c5;
alpha.at<double>(tri, 2) = -c2/c5;
beta.at<double>(tri, 0) = (xs.at<double>(j) * c4 - ys.at<double>(j) * c3)/c5;
beta.at<double>(tri, 1) = -c4/c5;
beta.at<double>(tri, 2) = c3/c5;
// Add points corresponding to triangles as optimisation
vector<double> triangle_points(10);
triangle_points[0] = xs.at<double>(j);
triangle_points[1] = ys.at<double>(j);
triangle_points[2] = xs.at<double>(k);
triangle_points[3] = ys.at<double>(k);
triangle_points[4] = xs.at<double>(l);
triangle_points[5] = ys.at<double>(l);
cv::Vec3d xs_three(triangle_points[0], triangle_points[2], triangle_points[4]);
cv::Vec3d ys_three(triangle_points[1], triangle_points[3], triangle_points[5]);
double min_x, max_x, min_y, max_y;
cv::minMaxIdx(xs_three, &min_x, &max_x);
cv::minMaxIdx(ys_three, &min_y, &max_y);
triangle_points[6] = max_x;
triangle_points[7] = max_y;
triangle_points[8] = min_x;
triangle_points[9] = min_y;
destination_points.push_back(triangle_points);
}
double max_x;
double max_y;
min_x = in_min_x;
min_y = in_min_y;
max_x = in_max_x;
max_y = in_max_y;
int w = (int)(max_x - min_x + 1.5);
int h = (int)(max_y - min_y + 1.5);
// Round the min_x and min_y for simplicity?
pixel_mask = cv::Mat_<uchar>(h, w, (uchar)0);
triangle_id = cv::Mat_<int>(h, w, -1);
int curr_tri = -1;
for(int y = 0; y < pixel_mask.rows; y++)
{
for(int x = 0; x < pixel_mask.cols; x++)
{
curr_tri = findTriangle(cv::Point_<double>(x + min_x, y + min_y), destination_points, curr_tri);
// If there is a triangle at this location
if(curr_tri != -1)
{
triangle_id.at<int>(y, x) = curr_tri;
pixel_mask.at<uchar>(y, x) = 1;
}
}
}
// Preallocate maps and coefficients
coefficients.create(num_tris, 6);
map_x.create(pixel_mask.rows,pixel_mask.cols);
map_y.create(pixel_mask.rows,pixel_mask.cols);
}
//===========================================================================
void PAW::Read(std::ifstream& stream)
{
stream.read ((char*)&number_of_pixels, 4);
stream.read ((char*)&min_x, 8);
stream.read ((char*)&min_y, 8);
LandmarkDetector::ReadMatBin(stream, destination_landmarks);
LandmarkDetector::ReadMatBin(stream, triangulation);
LandmarkDetector::ReadMatBin(stream, triangle_id);
cv::Mat tmpMask;
LandmarkDetector::ReadMatBin(stream, tmpMask);
tmpMask.convertTo(pixel_mask, CV_8U);
LandmarkDetector::ReadMatBin(stream, alpha);
LandmarkDetector::ReadMatBin(stream, beta);
map_x.create(pixel_mask.rows,pixel_mask.cols);
map_y.create(pixel_mask.rows,pixel_mask.cols);
coefficients.create(this->NumberOfTriangles(),6);
source_landmarks = destination_landmarks;
}
//=============================================================================
// cropping from the source image to the destination image using the shape in s, used to determine if shape fitting converged successfully
void PAW::Warp(const cv::Mat& image_to_warp, cv::Mat& destination_image, const cv::Mat_<double>& landmarks_to_warp)
{
// set the current shape
source_landmarks = landmarks_to_warp.clone();
// prepare the mapping coefficients using the current shape
this->CalcCoeff();
// Do the actual mapping computation (where to warp from)
this->WarpRegion(map_x, map_y);
// Do the actual warp (with bi-linear interpolation)
remap(image_to_warp, destination_image, map_x, map_y, CV_INTER_LINEAR);
}
//=============================================================================
// Calculate the warping coefficients
void PAW::CalcCoeff()
{
int p = this->NumberOfLandmarks();
for(int l = 0; l < this->NumberOfTriangles(); l++)
{
int i = triangulation.at<int>(l,0);
int j = triangulation.at<int>(l,1);
int k = triangulation.at<int>(l,2);
double c1 = source_landmarks.at<double>(i , 0);
double c2 = source_landmarks.at<double>(j , 0) - c1;
double c3 = source_landmarks.at<double>(k , 0) - c1;
double c4 = source_landmarks.at<double>(i + p, 0);
double c5 = source_landmarks.at<double>(j + p, 0) - c4;
double c6 = source_landmarks.at<double>(k + p, 0) - c4;
// Get a pointer to the coefficient we will be precomputing
double *coeff = coefficients.ptr<double>(l);
// Extract the relevant alphas and betas
double *c_alpha = alpha.ptr<double>(l);
double *c_beta = beta.ptr<double>(l);
coeff[0] = c1 + c2 * c_alpha[0] + c3 * c_beta[0];
coeff[1] = c2 * c_alpha[1] + c3 * c_beta[1];
coeff[2] = c2 * c_alpha[2] + c3 * c_beta[2];
coeff[3] = c4 + c5 * c_alpha[0] + c6 * c_beta[0];
coeff[4] = c5 * c_alpha[1] + c6 * c_beta[1];
coeff[5] = c5 * c_alpha[2] + c6 * c_beta[2];
}
}
//======================================================================
// Compute the mapping coefficients
void PAW::WarpRegion(cv::Mat_<float>& mapx, cv::Mat_<float>& mapy)
{
cv::MatIterator_<float> xp = mapx.begin();
cv::MatIterator_<float> yp = mapy.begin();
cv::MatIterator_<uchar> mp = pixel_mask.begin();
cv::MatIterator_<int> tp = triangle_id.begin();
// The coefficients corresponding to the current triangle
double * a;
// Current triangle being processed
int k=-1;
for(int y = 0; y < pixel_mask.rows; y++)
{
double yi = double(y) + min_y;
for(int x = 0; x < pixel_mask.cols; x++)
{
double xi = double(x) + min_x;
if(*mp == 0)
{
*xp = -1;
*yp = -1;
}
else
{
// triangle corresponding to the current pixel
int j = *tp;
// If it is different from the previous triangle point to new coefficients
// This will always be the case in the first iteration, hence a will not point to nothing
if(j != k)
{
// Update the coefficient pointer if a new triangle is being processed
a = coefficients.ptr<double>(j);
k = j;
}
//ap is now the pointer to the coefficients
double *ap = a;
//look at the first coefficient (and increment). first coefficient is an x offset
double xo = *ap++;
//second coefficient is an x scale as a function of x
xo += *ap++ * xi;
//third coefficient ap(2) is an x scale as a function of y
*xp = float(xo + *ap++ * yi);
//then fourth coefficient ap(3) is a y offset
double yo = *ap++;
//fifth coeff adds coeff[4]*x to y
yo += *ap++ * xi;
//final coeff adds coeff[5]*y to y
*yp = float(yo + *ap++ * yi);
}
mp++; tp++; xp++; yp++;
}
}
}
// ============================================================
// Helper functions to determine which point a triangle lies in
// ============================================================
// Is the point (x0,y0) on same side as a half-plane defined by (x1,y1), (x2, y2), and (x3, y3)
bool sameSide(double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3)
{
double x = (x3-x2)*(y0-y2) - (x0-x2)*(y3-y2);
double y = (x3-x2)*(y1-y2) - (x1-x2)*(y3-y2);
return x*y >= 0;
}
// if point (x0, y0) is on same side for all three half-planes it is in a triangle
bool pointInTriangle(double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3)
{
bool same_1 = sameSide(x0, y0, x1, y1, x2, y2, x3, y3);
bool same_2 = sameSide(x0, y0, x2, y2, x1, y1, x3, y3);
bool same_3 = sameSide(x0, y0, x3, y3, x1, y1, x2, y2);
return same_1 && same_2 && same_3;
}
// Find if a given point lies in the triangles
int PAW::findTriangle(const cv::Point_<double>& point, const std::vector<vector<double>>& control_points, int guess) const
{
int num_tris = control_points.size();
int tri = -1;
double x0 = point.x;
double y0 = point.y;
// Allow a guess for speed (so as not to go through all triangles)
if(guess != -1)
{
bool in_triangle = pointInTriangle(x0, y0, control_points[guess][0], control_points[guess][1], control_points[guess][2], control_points[guess][3], control_points[guess][4], control_points[guess][5]);
if(in_triangle)
{
return guess;
}
}
for (int i = 0; i < num_tris; ++i)
{
double max_x = control_points[i][6];
double max_y = control_points[i][7];
double min_x = control_points[i][8];
double min_y = control_points[i][9];
// Skip the check if the point is outside the bounding box of the triangle
if( max_x < x0 || min_x > x0 || max_y < y0 || min_y > y0)
{
continue;
}
bool in_triangle = pointInTriangle(x0, y0,
control_points[i][0], control_points[i][1],
control_points[i][2], control_points[i][3],
control_points[i][4], control_points[i][5]);
if(in_triangle)
{
tri = i;
break;
}
}
return tri;
}