139 lines
3.6 KiB
Matlab
139 lines
3.6 KiB
Matlab
function [ normX, normY, normZ, meanShape, Transform ] = ProcrustesAnalysis3D( x, y, z, tangentSpace, meanShape )
|
|
%PROCRUSTESANALYSIS3D Summary of this function goes here
|
|
% Detailed explanation goes here
|
|
|
|
meanProvided = false;
|
|
|
|
if(nargin > 4)
|
|
meanProvided = true;
|
|
end
|
|
|
|
% Translate all elements to origin
|
|
normX = zeros(size(x));
|
|
normY = zeros(size(y));
|
|
normZ = zeros(size(z));
|
|
|
|
for i = 1:size(x,1)
|
|
|
|
offsetX = mean(x(i,:));
|
|
offsetY = mean(y(i,:));
|
|
offsetZ = mean(z(i,:));
|
|
|
|
Transform.offsetX(i) = offsetX;
|
|
Transform.offsetY(i) = offsetY;
|
|
Transform.offsetZ(i) = offsetZ;
|
|
|
|
normX(i,:) = x(i,:) - offsetX;
|
|
normY(i,:) = y(i,:) - offsetY;
|
|
normZ(i,:) = z(i,:) - offsetZ;
|
|
|
|
end
|
|
|
|
% Rotate elements untill all of them have the same orientation
|
|
|
|
% the initial estimate of rotation would be the first element
|
|
% if change is less than 1% stop (shouldn't take more than 2 steps)
|
|
change = 0.1;
|
|
|
|
if(~meanProvided)
|
|
meanShape = [ mean(normX); mean(normY); mean(normZ) ]';
|
|
end
|
|
% scale all the shapes to mean shape
|
|
|
|
% Get the Frobenius norm, to scale the shapes to mean size (still want to
|
|
% retain mm)
|
|
meanScale = norm(meanShape, 'fro');
|
|
|
|
for i = 1:size(x,1)
|
|
|
|
scale = norm([normX(i,:) normY(i,:) normZ(i,:)], 'fro')/meanScale;
|
|
|
|
normX(i,:) = normX(i,:)/scale;
|
|
normY(i,:) = normY(i,:)/scale;
|
|
normZ(i,:) = normZ(i,:)/scale;
|
|
|
|
end
|
|
|
|
Transform.RotationX = zeros(size(x,1),1);
|
|
Transform.RotationY = zeros(size(x,1),1);
|
|
Transform.RotationZ = zeros(size(x,1),1);
|
|
|
|
for i = 1:30
|
|
|
|
% align all of the shapes to the mean shape
|
|
|
|
% remember all orientations to get the mean one (in euler angle form, pitch, yaw roll)
|
|
orientationsX = zeros(size(normX,1),1);
|
|
orientationsY = zeros(size(normX,1),1);
|
|
orientationsZ = zeros(size(normX,1),1);
|
|
|
|
for j = 1:size(x,1)
|
|
|
|
currentShape = [normX(j,:); normY(j,:); normZ(j,:)]';
|
|
% we want to align the current shape to the mean one
|
|
[ R, T ] = AlignShapesKabsch(currentShape, meanShape);
|
|
|
|
eulers = Rot2Euler(R);
|
|
|
|
orientationsX(j) = eulers(1);
|
|
orientationsY(j) = eulers(2);
|
|
orientationsZ(j) = eulers(3);
|
|
|
|
Transform.RotationX(j) = eulers(1);
|
|
Transform.RotationY(j) = eulers(2);
|
|
Transform.RotationZ(j) = eulers(3);
|
|
|
|
currentShape = R * currentShape';
|
|
|
|
normX(j,:) = currentShape(1,:);
|
|
normY(j,:) = currentShape(2,:);
|
|
normZ(j,:) = currentShape(3,:);
|
|
|
|
end
|
|
|
|
% recalculate the mean shape
|
|
% if(~meanProvided)
|
|
oldMean = meanShape;
|
|
meanShape = [mean(normX); mean(normY); mean(normZ)]';
|
|
meanScale = norm(meanShape, 'fro');
|
|
% end
|
|
|
|
for j = 1:size(x,1)
|
|
|
|
scale = norm([normX(j,:) normY(j,:) normZ(j,:)], 'fro')/meanScale;
|
|
|
|
normX(j,:) = normX(j,:)/scale;
|
|
normY(j,:) = normY(j,:)/scale;
|
|
normZ(j,:) = normZ(j,:)/scale;
|
|
|
|
end
|
|
|
|
if(i==1 && ~meanProvided)
|
|
|
|
% rotate the mean shape to mean rotation
|
|
meanOrientationX = mean(orientationsX);
|
|
meanOrientationY = mean(orientationsY);
|
|
meanOrientationZ = mean(orientationsZ);
|
|
|
|
R = Euler2Rot([meanOrientationX, meanOrientationY, meanOrientationZ]);
|
|
meanShape = (R * meanShape')';
|
|
end
|
|
|
|
% find frobenious norm
|
|
diff = norm(oldMean - meanShape, 'fro');
|
|
|
|
if(diff/norm(oldMean,'fro') < change)
|
|
break;
|
|
end
|
|
|
|
end
|
|
|
|
% transform to tangent space to preserve linearities
|
|
|
|
% get the scaling factors for each shape
|
|
if(tangentSpace)
|
|
[ normX, normY, normZ] = TangentSpaceTransform(normX, normY, normZ, meanShape);
|
|
end
|
|
|
|
end
|
|
|