sustaining_gazes/lib/local/LandmarkDetector/include/LandmarkDetectionValidator.h
Tadas Baltrusaitis 305af01326 Auto stash before merge of "develop" and "origin/develop"
- Adding new license files
- Replacing images with more suitable CC ones
2017-05-08 21:36:23 -04:00

146 lines
5.1 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __LANDMARK_DETECTION_VALIDATOR_h_
#define __LANDMARK_DETECTION_VALIDATOR_h_
// OpenCV includes
#include <opencv2/core/core.hpp>
// System includes
#include <vector>
// Local includes
#include "PAW.h"
using namespace std;
namespace LandmarkDetector
{
//===========================================================================
//
// Checking if landmark detection was successful using an SVR regressor
// Using multiple validators trained add different views
// The regressor outputs -1 for ideal alignment and 1 for worst alignment
//===========================================================================
class DetectionValidator
{
public:
// What type of validator we're using - 0 - linear svr, 1 - feed forward neural net, 2 - convolutional neural net
int validator_type;
// The orientations of each of the landmark detection validator
vector<cv::Vec3d> orientations;
// Piecewise affine warps to the reference shape (per orientation)
vector<PAW> paws;
//==========================================
// Linear SVR
// SVR biases
vector<double> bs;
// SVR weights
vector<cv::Mat_<double> > ws;
//==========================================
// Neural Network
// Neural net weights
vector<vector<cv::Mat_<double> > > ws_nn;
// What type of activation or output functions are used
// 0 - sigmoid, 1 - tanh_opt, 2 - ReLU
vector<int> activation_fun;
vector<int> output_fun;
//==========================================
// Convolutional Neural Network
// CNN layers for each view
// view -> layer -> input maps -> kernels
vector<vector<vector<vector<cv::Mat_<float> > > > > cnn_convolutional_layers;
// Bit ugly with so much nesting, but oh well
vector<vector<vector<vector<pair<int, cv::Mat_<double> > > > > > cnn_convolutional_layers_dft;
vector<vector<vector<float > > > cnn_convolutional_layers_bias;
vector< vector<int> > cnn_subsampling_layers;
vector< vector<cv::Mat_<float> > > cnn_fully_connected_layers;
vector< vector<float > > cnn_fully_connected_layers_bias;
// 0 - convolutional, 1 - subsampling, 2 - fully connected
vector<vector<int> > cnn_layer_types;
//==========================================
// Normalisation for face validation
vector<cv::Mat_<double> > mean_images;
vector<cv::Mat_<double> > standard_deviations;
// Default constructor
DetectionValidator(){;}
// Copy constructor
DetectionValidator(const DetectionValidator& other);
// Given an image, orientation and detected landmarks output the result of the appropriate regressor
double Check(const cv::Vec3d& orientation, const cv::Mat_<uchar>& intensity_img, cv::Mat_<double>& detected_landmarks);
// Reading in the model
void Read(string location);
// Getting the closest view center based on orientation
int GetViewId(const cv::Vec3d& orientation) const;
private:
// The actual regressor application on the image
// Support Vector Regression (linear kernel)
double CheckSVR(const cv::Mat_<double>& warped_img, int view_id);
// Feed-forward Neural Network
double CheckNN(const cv::Mat_<double>& warped_img, int view_id);
// Convolutional Neural Network
double CheckCNN(const cv::Mat_<double>& warped_img, int view_id);
// A normalisation helper
void NormaliseWarpedToVector(const cv::Mat_<double>& warped_img, cv::Mat_<double>& feature_vec, int view_id);
};
}
#endif