348 lines
9.5 KiB
C++
348 lines
9.5 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RecorderCSV.h"
|
|
|
|
// For sorting
|
|
#include <algorithm>
|
|
|
|
// For standard out
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <locale>
|
|
|
|
using namespace Utilities;
|
|
|
|
// Default constructor initializes the variables
|
|
RecorderCSV::RecorderCSV():output_file(){};
|
|
|
|
// TODO the other 4 constructors + destructors?
|
|
|
|
// Making sure full stop is used for decimal point separation
|
|
struct fullstop : std::numpunct<char> {
|
|
char do_decimal_point() const { return '.'; }
|
|
};
|
|
|
|
// Opening the file and preparing the header for it
|
|
bool RecorderCSV::Open(std::string output_file_name, bool is_sequence, bool output_2D_landmarks, bool output_3D_landmarks, bool output_model_params, bool output_pose, bool output_AUs, bool output_gaze,
|
|
int num_face_landmarks, int num_model_modes, int num_eye_landmarks, const std::vector<std::string>& au_names_class, const std::vector<std::string>& au_names_reg)
|
|
{
|
|
|
|
output_file.open(output_file_name, std::ios_base::out);
|
|
output_file.imbue(std::locale(output_file.getloc(), new fullstop));
|
|
|
|
if (!output_file.is_open())
|
|
return false;
|
|
|
|
this->is_sequence = is_sequence;
|
|
|
|
// Set up what we are recording
|
|
this->output_2D_landmarks = output_2D_landmarks;
|
|
this->output_3D_landmarks = output_3D_landmarks;
|
|
this->output_AUs = output_AUs;
|
|
this->output_gaze = output_gaze;
|
|
this->output_model_params = output_model_params;
|
|
this->output_pose = output_pose;
|
|
|
|
this->au_names_class = au_names_class;
|
|
this->au_names_reg = au_names_reg;
|
|
|
|
// Different headers if we are writing out the results on a sequence or an individual image
|
|
if(this->is_sequence)
|
|
{
|
|
output_file << "frame, timestamp, confidence, success";
|
|
}
|
|
else
|
|
{
|
|
output_file << "face, confidence";
|
|
}
|
|
|
|
if (output_gaze)
|
|
{
|
|
output_file << ", gaze_0_x, gaze_0_y, gaze_0_z, gaze_1_x, gaze_1_y, gaze_1_z, gaze_angle_x, gaze_angle_y";
|
|
|
|
for (int i = 0; i < num_eye_landmarks; ++i)
|
|
{
|
|
output_file << ", eye_lmk_x_" << i;
|
|
}
|
|
for (int i = 0; i < num_eye_landmarks; ++i)
|
|
{
|
|
output_file << ", eye_lmk_y_" << i;
|
|
}
|
|
|
|
for (int i = 0; i < num_eye_landmarks; ++i)
|
|
{
|
|
output_file << ", eye_lmk_X_" << i;
|
|
}
|
|
for (int i = 0; i < num_eye_landmarks; ++i)
|
|
{
|
|
output_file << ", eye_lmk_Y_" << i;
|
|
}
|
|
for (int i = 0; i < num_eye_landmarks; ++i)
|
|
{
|
|
output_file << ", eye_lmk_Z_" << i;
|
|
}
|
|
}
|
|
|
|
if (output_pose)
|
|
{
|
|
output_file << ", pose_Tx, pose_Ty, pose_Tz, pose_Rx, pose_Ry, pose_Rz";
|
|
}
|
|
|
|
if (output_2D_landmarks)
|
|
{
|
|
for (int i = 0; i < num_face_landmarks; ++i)
|
|
{
|
|
output_file << ", x_" << i;
|
|
}
|
|
for (int i = 0; i < num_face_landmarks; ++i)
|
|
{
|
|
output_file << ", y_" << i;
|
|
}
|
|
}
|
|
|
|
if (output_3D_landmarks)
|
|
{
|
|
for (int i = 0; i < num_face_landmarks; ++i)
|
|
{
|
|
output_file << ", X_" << i;
|
|
}
|
|
for (int i = 0; i < num_face_landmarks; ++i)
|
|
{
|
|
output_file << ", Y_" << i;
|
|
}
|
|
for (int i = 0; i < num_face_landmarks; ++i)
|
|
{
|
|
output_file << ", Z_" << i;
|
|
}
|
|
}
|
|
|
|
// Outputting model parameters (rigid and non-rigid), the first parameters are the 6 rigid shape parameters, they are followed by the non rigid shape parameters
|
|
if (output_model_params)
|
|
{
|
|
output_file << ", p_scale, p_rx, p_ry, p_rz, p_tx, p_ty";
|
|
for (int i = 0; i < num_model_modes; ++i)
|
|
{
|
|
output_file << ", p_" << i;
|
|
}
|
|
}
|
|
|
|
if (output_AUs)
|
|
{
|
|
std::sort(this->au_names_reg.begin(), this->au_names_reg.end());
|
|
for (std::string reg_name : this->au_names_reg)
|
|
{
|
|
output_file << ", " << reg_name << "_r";
|
|
}
|
|
|
|
std::sort(this->au_names_class.begin(), this->au_names_class.end());
|
|
for (std::string class_name : this->au_names_class)
|
|
{
|
|
output_file << ", " << class_name << "_c";
|
|
}
|
|
}
|
|
|
|
output_file << std::endl;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// TODO check if the stream is open
|
|
void RecorderCSV::WriteLine(int observation_count, double time_stamp, bool landmark_detection_success, double landmark_confidence,
|
|
const cv::Mat_<double>& landmarks_2D, const cv::Mat_<double>& landmarks_3D, const cv::Mat_<double>& pdm_model_params, const cv::Vec6d& rigid_shape_params, cv::Vec6d& pose_estimate,
|
|
const cv::Point3f& gazeDirection0, const cv::Point3f& gazeDirection1, const cv::Vec2d& gaze_angle, const std::vector<cv::Point2d>& eye_landmarks2d, const std::vector<cv::Point3d>& eye_landmarks3d,
|
|
const std::vector<std::pair<std::string, double> >& au_intensities, const std::vector<std::pair<std::string, double> >& au_occurences)
|
|
{
|
|
|
|
if (!output_file.is_open())
|
|
{
|
|
std::cout << "The output CSV file is not open" << std::endl;
|
|
}
|
|
|
|
// Making sure fixed and not scientific notation is used
|
|
output_file << std::fixed;
|
|
output_file << std::noshowpoint;
|
|
if(is_sequence)
|
|
{
|
|
output_file << std::setprecision(3);
|
|
output_file << observation_count << ", " << time_stamp;
|
|
output_file << std::setprecision(2);
|
|
output_file << ", " << landmark_confidence;
|
|
output_file << std::setprecision(0);
|
|
output_file << ", " << landmark_detection_success;
|
|
}
|
|
else
|
|
{
|
|
output_file << std::setprecision(3);
|
|
output_file << observation_count << ", " << landmark_confidence;
|
|
}
|
|
// Output the estimated gaze
|
|
if (output_gaze)
|
|
{
|
|
output_file << std::setprecision(3);
|
|
output_file << ", " << gazeDirection0.x << ", " << gazeDirection0.y << ", " << gazeDirection0.z
|
|
<< ", " << gazeDirection1.x << ", " << gazeDirection1.y << ", " << gazeDirection1.z;
|
|
|
|
// Output gaze angle (same format as head pose angle)
|
|
output_file << ", " << gaze_angle[0] << ", " << gaze_angle[1];
|
|
|
|
// Output the 2D eye landmarks
|
|
output_file << std::setprecision(1);
|
|
for (auto eye_lmk : eye_landmarks2d)
|
|
{
|
|
output_file << ", " << eye_lmk.x;
|
|
}
|
|
|
|
for (auto eye_lmk : eye_landmarks2d)
|
|
{
|
|
output_file << ", " << eye_lmk.y;
|
|
}
|
|
|
|
// Output the 3D eye landmarks
|
|
for (auto eye_lmk : eye_landmarks3d)
|
|
{
|
|
output_file << ", " << eye_lmk.x;
|
|
}
|
|
|
|
for (auto eye_lmk : eye_landmarks3d)
|
|
{
|
|
output_file << ", " << eye_lmk.y;
|
|
}
|
|
|
|
for (auto eye_lmk : eye_landmarks3d)
|
|
{
|
|
output_file << ", " << eye_lmk.z;
|
|
}
|
|
}
|
|
|
|
// Output the estimated head pose
|
|
if (output_pose)
|
|
{
|
|
output_file << std::setprecision(1);
|
|
output_file << ", " << pose_estimate[0] << ", " << pose_estimate[1] << ", " << pose_estimate[2];
|
|
output_file << std::setprecision(3);
|
|
output_file << ", " << pose_estimate[3] << ", " << pose_estimate[4] << ", " << pose_estimate[5];
|
|
}
|
|
|
|
// Output the detected 2D facial landmarks
|
|
if (output_2D_landmarks)
|
|
{
|
|
output_file.precision(1);
|
|
// Output the 2D eye landmarks
|
|
for (auto lmk : landmarks_2D)
|
|
{
|
|
output_file << ", " << lmk;
|
|
}
|
|
}
|
|
|
|
// Output the detected 3D facial landmarks
|
|
if (output_3D_landmarks)
|
|
{
|
|
output_file.precision(1);
|
|
// Output the 2D eye landmarks
|
|
for (auto lmk : landmarks_3D)
|
|
{
|
|
output_file << ", " << lmk;
|
|
}
|
|
}
|
|
|
|
if (output_model_params)
|
|
{
|
|
output_file.precision(3);
|
|
for (int i = 0; i < 6; ++i)
|
|
{
|
|
output_file << ", " << rigid_shape_params[i];
|
|
}
|
|
// Output the non_rigid shape parameters
|
|
for (auto lmk : pdm_model_params)
|
|
{
|
|
output_file << ", " << lmk;
|
|
}
|
|
}
|
|
|
|
if (output_AUs)
|
|
{
|
|
|
|
// write out ar the correct index
|
|
output_file.precision(2);
|
|
for (std::string au_name : au_names_reg)
|
|
{
|
|
for (auto au_reg : au_intensities)
|
|
{
|
|
if (au_name.compare(au_reg.first) == 0)
|
|
{
|
|
output_file << ", " << au_reg.second;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (au_intensities.size() == 0)
|
|
{
|
|
for (size_t p = 0; p < au_names_reg.size(); ++p)
|
|
{
|
|
output_file << ", 0";
|
|
}
|
|
}
|
|
|
|
output_file.precision(1);
|
|
// write out ar the correct index
|
|
for (std::string au_name : au_names_class)
|
|
{
|
|
for (auto au_class : au_occurences)
|
|
{
|
|
if (au_name.compare(au_class.first) == 0)
|
|
{
|
|
output_file << ", " << au_class.second;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (au_occurences.size() == 0)
|
|
{
|
|
for (size_t p = 0; p < au_names_class.size(); ++p)
|
|
{
|
|
output_file << ", 0";
|
|
}
|
|
}
|
|
}
|
|
output_file << std::endl;
|
|
}
|
|
|
|
// Closing the file and cleaning up
|
|
void RecorderCSV::Close()
|
|
{
|
|
output_file.close();
|
|
}
|