357 lines
10 KiB
C++
357 lines
10 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// FaceTrackingVid.cpp : Defines the entry point for the console application for tracking faces in videos.
|
|
|
|
// Libraries for landmark detection (includes CLNF and CLM modules)
|
|
#include "LandmarkCoreIncludes.h"
|
|
#include "GazeEstimation.h"
|
|
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/videoio/videoio.hpp> // Video write
|
|
#include <opencv2/videoio/videoio_c.h> // Video write
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
// Boost includes
|
|
#include <filesystem.hpp>
|
|
#include <filesystem/fstream.hpp>
|
|
|
|
#define INFO_STREAM( stream ) \
|
|
std::cout << stream << std::endl
|
|
|
|
#define WARN_STREAM( stream ) \
|
|
std::cout << "Warning: " << stream << std::endl
|
|
|
|
#define ERROR_STREAM( stream ) \
|
|
std::cout << "Error: " << stream << std::endl
|
|
|
|
static void printErrorAndAbort( const std::string & error )
|
|
{
|
|
std::cout << error << std::endl;
|
|
abort();
|
|
}
|
|
|
|
#define FATAL_STREAM( stream ) \
|
|
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
|
|
|
|
using namespace std;
|
|
|
|
vector<string> get_arguments(int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments;
|
|
|
|
for(int i = 0; i < argc; ++i)
|
|
{
|
|
arguments.push_back(string(argv[i]));
|
|
}
|
|
return arguments;
|
|
}
|
|
|
|
// Some globals for tracking timing information for visualisation
|
|
double fps_tracker = -1.0;
|
|
int64 t0 = 0;
|
|
|
|
// Visualising the results
|
|
void visualise_tracking(cv::Mat& captured_image, const LandmarkDetector::CLNF& face_model, const LandmarkDetector::FaceModelParameters& det_parameters, cv::Point3f gazeDirection0, cv::Point3f gazeDirection1, int frame_count, double fx, double fy, double cx, double cy)
|
|
{
|
|
|
|
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
|
|
double detection_certainty = face_model.detection_certainty;
|
|
bool detection_success = face_model.detection_success;
|
|
|
|
double visualisation_boundary = 0.2;
|
|
|
|
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
|
|
if (detection_certainty < visualisation_boundary)
|
|
{
|
|
LandmarkDetector::Draw(captured_image, face_model);
|
|
|
|
double vis_certainty = detection_certainty;
|
|
if (vis_certainty > 1)
|
|
vis_certainty = 1;
|
|
if (vis_certainty < -1)
|
|
vis_certainty = -1;
|
|
|
|
vis_certainty = (vis_certainty + 1) / (visualisation_boundary + 1);
|
|
|
|
// A rough heuristic for box around the face width
|
|
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
|
|
|
|
cv::Vec6d pose_estimate_to_draw = LandmarkDetector::GetPose(face_model, fx, fy, cx, cy);
|
|
|
|
// Draw it in reddish if uncertain, blueish if certain
|
|
LandmarkDetector::DrawBox(captured_image, pose_estimate_to_draw, cv::Scalar((1 - vis_certainty)*255.0, 0, vis_certainty * 255), thickness, fx, fy, cx, cy);
|
|
|
|
if (det_parameters.track_gaze && detection_success && face_model.eye_model)
|
|
{
|
|
GazeAnalysis::DrawGaze(captured_image, face_model, gazeDirection0, gazeDirection1, fx, fy, cx, cy);
|
|
}
|
|
}
|
|
|
|
// Work out the framerate
|
|
if (frame_count % 10 == 0)
|
|
{
|
|
double t1 = cv::getTickCount();
|
|
fps_tracker = 10.0 / (double(t1 - t0) / cv::getTickFrequency());
|
|
t0 = t1;
|
|
}
|
|
|
|
// Write out the framerate on the image before displaying it
|
|
char fpsC[255];
|
|
std::sprintf(fpsC, "%d", (int)fps_tracker);
|
|
string fpsSt("FPS:");
|
|
fpsSt += fpsC;
|
|
cv::putText(captured_image, fpsSt, cv::Point(10, 20), CV_FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0));
|
|
|
|
if (!det_parameters.quiet_mode)
|
|
{
|
|
cv::namedWindow("tracking_result", 1);
|
|
cv::imshow("tracking_result", captured_image);
|
|
}
|
|
}
|
|
|
|
int main (int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments = get_arguments(argc, argv);
|
|
|
|
// Some initial parameters that can be overriden from command line
|
|
vector<string> files, output_video_files, out_dummy;
|
|
|
|
// By default try webcam 0
|
|
int device = 0;
|
|
|
|
LandmarkDetector::FaceModelParameters det_parameters(arguments);
|
|
|
|
// Get the input output file parameters
|
|
|
|
// Indicates that rotation should be with respect to world or camera coordinates
|
|
string output_codec;
|
|
LandmarkDetector::get_video_input_output_params(files, out_dummy, output_video_files, output_codec, arguments);
|
|
|
|
// The modules that are being used for tracking
|
|
LandmarkDetector::CLNF clnf_model(det_parameters.model_location);
|
|
|
|
// Grab camera parameters, if they are not defined (approximate values will be used)
|
|
float fx = 0, fy = 0, cx = 0, cy = 0;
|
|
// Get camera parameters
|
|
LandmarkDetector::get_camera_params(device, fx, fy, cx, cy, arguments);
|
|
|
|
// If cx (optical axis centre) is undefined will use the image size/2 as an estimate
|
|
bool cx_undefined = false;
|
|
bool fx_undefined = false;
|
|
if (cx == 0 || cy == 0)
|
|
{
|
|
cx_undefined = true;
|
|
}
|
|
if (fx == 0 || fy == 0)
|
|
{
|
|
fx_undefined = true;
|
|
}
|
|
|
|
// If multiple video files are tracked, use this to indicate if we are done
|
|
bool done = false;
|
|
int f_n = -1;
|
|
|
|
det_parameters.track_gaze = true;
|
|
|
|
while(!done) // this is not a for loop as we might also be reading from a webcam
|
|
{
|
|
|
|
string current_file;
|
|
|
|
// We might specify multiple video files as arguments
|
|
if(files.size() > 0)
|
|
{
|
|
f_n++;
|
|
current_file = files[f_n];
|
|
}
|
|
else
|
|
{
|
|
// If we want to write out from webcam
|
|
f_n = 0;
|
|
}
|
|
|
|
// Do some grabbing
|
|
cv::VideoCapture video_capture;
|
|
if( current_file.size() > 0 )
|
|
{
|
|
if (!boost::filesystem::exists(current_file))
|
|
{
|
|
FATAL_STREAM("File does not exist");
|
|
return 1;
|
|
}
|
|
|
|
current_file = boost::filesystem::path(current_file).generic_string();
|
|
|
|
INFO_STREAM( "Attempting to read from file: " << current_file );
|
|
video_capture = cv::VideoCapture( current_file );
|
|
}
|
|
else
|
|
{
|
|
INFO_STREAM( "Attempting to capture from device: " << device );
|
|
video_capture = cv::VideoCapture( device );
|
|
|
|
// Read a first frame often empty in camera
|
|
cv::Mat captured_image;
|
|
video_capture >> captured_image;
|
|
}
|
|
|
|
if (!video_capture.isOpened())
|
|
{
|
|
FATAL_STREAM("Failed to open video source");
|
|
return 1;
|
|
}
|
|
else INFO_STREAM( "Device or file opened");
|
|
|
|
cv::Mat captured_image;
|
|
video_capture >> captured_image;
|
|
|
|
// If optical centers are not defined just use center of image
|
|
if (cx_undefined)
|
|
{
|
|
cx = captured_image.cols / 2.0f;
|
|
cy = captured_image.rows / 2.0f;
|
|
}
|
|
// Use a rough guess-timate of focal length
|
|
if (fx_undefined)
|
|
{
|
|
fx = 500 * (captured_image.cols / 640.0);
|
|
fy = 500 * (captured_image.rows / 480.0);
|
|
|
|
fx = (fx + fy) / 2.0;
|
|
fy = fx;
|
|
}
|
|
|
|
int frame_count = 0;
|
|
|
|
// saving the videos
|
|
cv::VideoWriter writerFace;
|
|
if (!output_video_files.empty())
|
|
{
|
|
try
|
|
{
|
|
writerFace = cv::VideoWriter(output_video_files[f_n], CV_FOURCC(output_codec[0], output_codec[1], output_codec[2], output_codec[3]), 30, captured_image.size(), true);
|
|
}
|
|
catch(cv::Exception e)
|
|
{
|
|
WARN_STREAM( "Could not open VideoWriter, OUTPUT FILE WILL NOT BE WRITTEN. Currently using codec " << output_codec << ", try using an other one (-oc option)");
|
|
}
|
|
}
|
|
|
|
// Use for timestamping if using a webcam
|
|
int64 t_initial = cv::getTickCount();
|
|
|
|
INFO_STREAM( "Starting tracking");
|
|
while(!captured_image.empty())
|
|
{
|
|
|
|
// Reading the images
|
|
cv::Mat_<uchar> grayscale_image;
|
|
|
|
if(captured_image.channels() == 3)
|
|
{
|
|
cv::cvtColor(captured_image, grayscale_image, CV_BGR2GRAY);
|
|
}
|
|
else
|
|
{
|
|
grayscale_image = captured_image.clone();
|
|
}
|
|
|
|
// The actual facial landmark detection / tracking
|
|
bool detection_success = LandmarkDetector::DetectLandmarksInVideo(grayscale_image, clnf_model, det_parameters);
|
|
|
|
// Visualising the results
|
|
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
|
|
double detection_certainty = clnf_model.detection_certainty;
|
|
|
|
// Gaze tracking, absolute gaze direction
|
|
cv::Point3f gazeDirection0(0, 0, -1);
|
|
cv::Point3f gazeDirection1(0, 0, -1);
|
|
|
|
if (det_parameters.track_gaze && detection_success && clnf_model.eye_model)
|
|
{
|
|
GazeAnalysis::EstimateGaze(clnf_model, gazeDirection0, fx, fy, cx, cy, true);
|
|
GazeAnalysis::EstimateGaze(clnf_model, gazeDirection1, fx, fy, cx, cy, false);
|
|
}
|
|
|
|
visualise_tracking(captured_image, clnf_model, det_parameters, gazeDirection0, gazeDirection1, frame_count, fx, fy, cx, cy);
|
|
|
|
// output the tracked video
|
|
if (!output_video_files.empty())
|
|
{
|
|
writerFace << captured_image;
|
|
}
|
|
|
|
|
|
video_capture >> captured_image;
|
|
|
|
// detect key presses
|
|
char character_press = cv::waitKey(1);
|
|
|
|
// restart the tracker
|
|
if(character_press == 'r')
|
|
{
|
|
clnf_model.Reset();
|
|
}
|
|
// quit the application
|
|
else if(character_press=='q')
|
|
{
|
|
return(0);
|
|
}
|
|
|
|
// Update the frame count
|
|
frame_count++;
|
|
|
|
}
|
|
|
|
frame_count = 0;
|
|
|
|
// Reset the model, for the next video
|
|
clnf_model.Reset();
|
|
|
|
// break out of the loop if done with all the files (or using a webcam)
|
|
if(f_n == files.size() -1 || files.empty())
|
|
{
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|