132 lines
5 KiB
Matlab
132 lines
5 KiB
Matlab
function [ responses ] = PatchResponseSVM_multi_modal( patches, patch_experts, visibilities, normalisationOptions, clmParameters, window_size)
|
|
%PATCHRESPONSESVM Summary of this function goes here
|
|
% Detailed explanation goes here
|
|
patchSize = normalisationOptions.patchSize;
|
|
|
|
responses = cell(size(patches, 1), 1);
|
|
empty = zeros(window_size(1)-patchSize(1)+1, window_size(2)-patchSize(2)+1);
|
|
|
|
|
|
% prepare the patches through either turning them to gradients or
|
|
if(clmParameters.use_multi_modal)
|
|
|
|
patches_to_use = cell(numel(clmParameters.multi_modal_types),1);
|
|
|
|
for t=1:numel(clmParameters.multi_modal_types)
|
|
if(strcmp(clmParameters.multi_modal_types{t}, 'reg'))
|
|
patches_reg = patches;
|
|
if(normalisationOptions.zscore)
|
|
meanCurr = mean(patches, 2);
|
|
stdCurr = std(double(patches), 0, 2);
|
|
|
|
stdCurr(stdCurr == 0) = 1;
|
|
|
|
patches_reg = bsxfun(@minus, patches, meanCurr);
|
|
|
|
patches_reg = bsxfun(@rdivide, patches_reg, stdCurr);
|
|
end
|
|
patches_to_use{t} = patches_reg;
|
|
elseif(strcmp(clmParameters.multi_modal_types{t}, 'grad'))
|
|
v = [1];
|
|
h = [-1 0 1];
|
|
grad_patches = zeros(size(patches));
|
|
for i = 1:numel(patches(:,1))
|
|
if visibilities(i)
|
|
currSample = reshape(patches(i,:), window_size(1), window_size(2));
|
|
edgeX = conv2(conv2(currSample, v, 'same'), h, 'same');
|
|
edgeY = conv2(conv2(currSample, v', 'same'), h', 'same');
|
|
grad = edgeX.^2 + edgeY.^2;
|
|
grad(1,:) = 0;
|
|
grad(:,1) = 0;
|
|
grad(end,:) = 0;
|
|
grad(:,end) = 0;
|
|
grad_patches(i,:) = reshape(grad, window_size(1) * window_size(1),1);
|
|
end
|
|
end
|
|
patches_to_use{t} = grad_patches;
|
|
end
|
|
end
|
|
else
|
|
patches_reg = patches;
|
|
if(normalisationOptions.zscore)
|
|
|
|
if(normalisationOptions.ignoreInvalidInMeanStd)
|
|
|
|
% invalid data represented with 0, ignore it when computing
|
|
% mean and standard deviation (useful for depth)
|
|
for i = 1:size(patches,1)
|
|
mask = patches(i,:) ~= 0;
|
|
|
|
meanCurr = mean(patches(i,mask));
|
|
stdCurr = std(patches(i,mask));
|
|
|
|
patches(i,mask) = patches(i, mask) - meanCurr;
|
|
if(stdCurr ~= 0)
|
|
patches(i, mask) = patches(i, mask) ./ meanCurr;
|
|
end
|
|
|
|
patches(i, ~mask) = normalisationOptions.setIllegalToPost;
|
|
|
|
end
|
|
patches_reg = patches;
|
|
else
|
|
meanCurr = mean(patches, 2);
|
|
stdCurr = std(double(patches), 0, 2);
|
|
|
|
stdCurr(stdCurr == 0) = 1;
|
|
|
|
patches_reg = bsxfun(@minus, patches, meanCurr);
|
|
|
|
patches_reg = bsxfun(@rdivide, patches_reg, stdCurr);
|
|
|
|
end
|
|
|
|
end
|
|
patches_to_use = {patches_reg};
|
|
end
|
|
|
|
for i = 1:numel(patches(:,1))
|
|
responses{i} = empty;
|
|
if visibilities(i)
|
|
% responses{i} = ones(size(empty));
|
|
colNorm = normalisationOptions.useNormalisedCrossCorr == 1;
|
|
|
|
for p=1:numel(patches_to_use)
|
|
|
|
smallRegionVec = patches_to_use{p}(i,:);
|
|
smallRegion = reshape(smallRegionVec, window_size(1), window_size(2));
|
|
|
|
% get the patch response
|
|
response = SVMresponse(smallRegion, patch_experts{i}(p).w, colNorm, patchSize);
|
|
|
|
response = (exp(-(patch_experts{i}(p).scaling*response+patch_experts{i}(p).bias))+1).^-1;
|
|
|
|
if(p==1)
|
|
responses{i} = response;
|
|
else
|
|
responses{i} = responses{i} .* response;
|
|
end
|
|
end
|
|
|
|
normOp = (sum(responses{i}(:)));
|
|
if(normOp ~= 0)
|
|
responses{i} = responses{i} ./ normOp;
|
|
end
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
function response = SVMresponse(region, patchExpert, normalise_x_corr,patchSize)
|
|
|
|
if(normalise_x_corr)
|
|
% the much faster mex version
|
|
[response] = normxcorr2_mex(patchExpert, region);
|
|
|
|
response = response(patchSize(1):end-patchSize(1)+1,patchSize(2):end-patchSize(2)+1);
|
|
else
|
|
% this assumes that the patch is already normed
|
|
template = rot90(patchExpert,2);
|
|
response = conv2(region, template, 'valid');
|
|
end
|
|
end
|