b224fcdfc9
# Conflicts: # .gitignore # exe/FaceLandmarkVidMulti/FaceLandmarkVidMulti.cpp # lib/local/FaceAnalyser/FaceAnalyser.vcxproj # lib/local/LandmarkDetector/include/LandmarkDetectorUtils.h # lib/local/LandmarkDetector/src/LandmarkDetectorUtils.cpp # matlab_runners/Demos/feature_extraction_demo_vid.m # matlab_runners/Demos/gaze_extraction_demo_vid.m
84 lines
No EOL
2.6 KiB
Matlab
84 lines
No EOL
2.6 KiB
Matlab
function [meanError, all_rot_preds, all_rot_gts, meanErrors, all_errors, rels_all, seq_ids] = calcBiwiError(resDir, gtDir)
|
|
|
|
seqNames = {'01','02','03','04','05','06','07','08','09', ...
|
|
'10', '11','12','13','14','15','16','17','18','19', ...
|
|
'20', '21','22','23','24'};
|
|
|
|
rotMeanErr = zeros(numel(seqNames),3);
|
|
rotRMS = zeros(numel(seqNames),3);
|
|
rot = cell(1,numel(seqNames));
|
|
rotg = cell(1,numel(seqNames));
|
|
rels_all = [];
|
|
|
|
seq_ids = {};
|
|
|
|
for i=1:numel(seqNames)
|
|
|
|
posesGround = load ([gtDir '/' seqNames{i} '/groundTruthPose.txt']);
|
|
|
|
[frame t, rels, sc tx ty tz rx ry rz] = textread([resDir '/' seqNames{i} '.csv'], '%f, %f, %f, %f, %f, %f, %f, %f, %f, %f', 'headerlines', 1);
|
|
|
|
% the reliabilities of head pose
|
|
rels_all = cat(1, rels_all, rels);
|
|
|
|
rotg{i} = posesGround(:,[5 6 7]);
|
|
rot{i} = [rx ry rz];
|
|
T = [tx ty tx];
|
|
|
|
% Correct the first frame so it corresponds to (0,0,0), as slightly
|
|
% different pose might be assumed frontal and this corrects for
|
|
% that
|
|
|
|
% Work out the correction matrix for ground truth
|
|
rot_corr_gt = Euler2Rot(rotg{i}(1,:));
|
|
for r_e = 1:size(rotg{i},1)
|
|
rot_curr_gt = Euler2Rot(rotg{i}(r_e,:));
|
|
rot_new_gt = rot_corr_gt' * rot_curr_gt;
|
|
rotg{i}(r_e,:) = Rot2Euler(rot_new_gt);
|
|
end
|
|
|
|
% First move the orientation to camera space
|
|
zx = sqrt(tx.^2 + tz.^2);
|
|
eul_x = atan2(ty, zx);
|
|
|
|
zy = sqrt(ty.^2 + tz.^2);
|
|
eul_y = -atan2(tx, zy);
|
|
for r_e = 1:size(rot{i},1)
|
|
cam_rot = Euler2Rot([eul_x(r_e), eul_y(r_e), 0]);
|
|
h_rot = Euler2Rot(rot{i}(r_e,:));
|
|
|
|
c_rot = cam_rot * h_rot;
|
|
rot{i}(r_e,:) = Rot2Euler(c_rot);
|
|
end
|
|
|
|
% Work out the correction matrix for estimates
|
|
rot_corr_est = Euler2Rot(rot{i}(1,:));
|
|
for r_e = 1:size(rot{i},1)
|
|
rot_curr_est = Euler2Rot(rot{i}(r_e,:));
|
|
rot_new_est = rot_corr_est' * rot_curr_est;
|
|
rot{i}(r_e,:) = Rot2Euler(rot_new_est);
|
|
end
|
|
|
|
rotg{i} = rotg{i} * 180 / pi;
|
|
rot{i} = rot{i} * 180 / pi;
|
|
|
|
|
|
rotMeanErr(i,:) = mean(abs((rot{i}(:,:)-rotg{i}(:,:))));
|
|
rotRMS(i,:) = sqrt(mean(((rot{i}(:,:)-rotg{i}(:,:))).^2));
|
|
|
|
seq_ids = cat(1, seq_ids, repmat(seqNames(i), size(rot{i},1), 1));
|
|
|
|
end
|
|
%%
|
|
meanErrors = rotMeanErr;
|
|
allRot = cell2mat(rot');
|
|
allRotg = cell2mat(rotg');
|
|
meanError = mean(abs((allRot(:,:)-allRotg(:,:))));
|
|
|
|
all_errors = abs(allRot-allRotg);
|
|
|
|
rmsError = sqrt(mean(((allRot(:,:)-allRotg(:,:))).^2));
|
|
errorVariance = std(abs((allRot(:,:)-allRotg(:,:))));
|
|
|
|
all_rot_preds = allRot;
|
|
all_rot_gts = allRotg; |