sustaining_gazes/lib/local/FaceAnalyser/src/GazeEstimation.cpp
Tadas Baltrusaitis 305af01326 Auto stash before merge of "develop" and "origin/develop"
- Adding new license files
- Replacing images with more suitable CC ones
2017-05-08 21:36:23 -04:00

180 lines
No EOL
7.1 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <iostream>
#include "GazeEstimation.h"
using namespace std;
using namespace FaceAnalysis;
// For subpixel accuracy drawing
const int gaze_draw_shiftbits = 4;
const int gaze_draw_multiplier = 1 << 4;
cv::Point3f RaySphereIntersect(cv::Point3f rayOrigin, cv::Point3f rayDir, cv::Point3f sphereOrigin, float sphereRadius){
float dx = rayDir.x;
float dy = rayDir.y;
float dz = rayDir.z;
float x0 = rayOrigin.x;
float y0 = rayOrigin.y;
float z0 = rayOrigin.z;
float cx = sphereOrigin.x;
float cy = sphereOrigin.y;
float cz = sphereOrigin.z;
float r = sphereRadius;
float a = dx*dx + dy*dy + dz*dz;
float b = 2*dx*(x0-cx) + 2*dy*(y0-cy) + 2*dz*(z0-cz);
float c = cx*cx + cy*cy + cz*cz + x0*x0 + y0*y0 + z0*z0 + -2*(cx*x0 + cy*y0 + cz*z0) - r*r;
float disc = b*b - 4*a*c;
float t = (-b - sqrt(b*b - 4*a*c))/2*a;
// This implies that the lines did not intersect, point straight ahead
if (b*b - 4 * a*c < 0)
return cv::Point3f(0, 0, -1);
return rayOrigin + rayDir * t;
}
cv::Point3f GetPupilPosition(cv::Mat_<double> eyeLdmks3d){
eyeLdmks3d = eyeLdmks3d.t();
cv::Mat_<double> irisLdmks3d = eyeLdmks3d.rowRange(0,8);
cv::Point3f p (mean(irisLdmks3d.col(0))[0], mean(irisLdmks3d.col(1))[0], mean(irisLdmks3d.col(2))[0]);
return p;
}
void FaceAnalysis::EstimateGaze(const LandmarkDetector::CLNF& clnf_model, cv::Point3f& gaze_absolute, float fx, float fy, float cx, float cy, bool left_eye)
{
cv::Vec6d headPose = LandmarkDetector::GetPoseCamera(clnf_model, fx, fy, cx, cy);
cv::Vec3d eulerAngles(headPose(3), headPose(4), headPose(5));
cv::Matx33d rotMat = LandmarkDetector::Euler2RotationMatrix(eulerAngles);
int part = -1;
for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i)
{
if (left_eye && clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0)
{
part = i;
}
if (!left_eye && clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0)
{
part = i;
}
}
if (part == -1)
{
std::cout << "Couldn't find the eye model, something wrong" << std::endl;
}
cv::Mat eyeLdmks3d = clnf_model.hierarchical_models[part].GetShape(fx, fy, cx, cy);
cv::Point3f pupil = GetPupilPosition(eyeLdmks3d);
cv::Point3f rayDir = pupil / norm(pupil);
cv::Mat faceLdmks3d = clnf_model.GetShape(fx, fy, cx, cy);
faceLdmks3d = faceLdmks3d.t();
cv::Mat offset = (cv::Mat_<double>(3, 1) << 0, -3.50, 0);
int eyeIdx = 1;
if (left_eye)
{
eyeIdx = 0;
}
cv::Mat eyeballCentreMat = (faceLdmks3d.row(36+eyeIdx*6) + faceLdmks3d.row(39+eyeIdx*6))/2.0f + (cv::Mat(rotMat)*offset).t();
cv::Point3f eyeballCentre = cv::Point3f(eyeballCentreMat);
cv::Point3f gazeVecAxis = RaySphereIntersect(cv::Point3f(0,0,0), rayDir, eyeballCentre, 12) - eyeballCentre;
gaze_absolute = gazeVecAxis / norm(gazeVecAxis);
}
void FaceAnalysis::DrawGaze(cv::Mat img, const LandmarkDetector::CLNF& clnf_model, cv::Point3f gazeVecAxisLeft, cv::Point3f gazeVecAxisRight, float fx, float fy, float cx, float cy)
{
cv::Mat cameraMat = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0);
int part_left = -1;
int part_right = -1;
for (size_t i = 0; i < clnf_model.hierarchical_models.size(); ++i)
{
if (clnf_model.hierarchical_model_names[i].compare("left_eye_28") == 0)
{
part_left = i;
}
if (clnf_model.hierarchical_model_names[i].compare("right_eye_28") == 0)
{
part_right = i;
}
}
cv::Mat eyeLdmks3d_left = clnf_model.hierarchical_models[part_left].GetShape(fx, fy, cx, cy);
cv::Point3f pupil_left = GetPupilPosition(eyeLdmks3d_left);
cv::Mat eyeLdmks3d_right = clnf_model.hierarchical_models[part_right].GetShape(fx, fy, cx, cy);
cv::Point3f pupil_right = GetPupilPosition(eyeLdmks3d_right);
vector<cv::Point3d> points_left;
points_left.push_back(cv::Point3d(pupil_left));
points_left.push_back(cv::Point3d(pupil_left + gazeVecAxisLeft*50.0));
vector<cv::Point3d> points_right;
points_right.push_back(cv::Point3d(pupil_right));
points_right.push_back(cv::Point3d(pupil_right + gazeVecAxisRight*50.0));
cv::Mat_<double> proj_points;
cv::Mat_<double> mesh_0 = (cv::Mat_<double>(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z);
LandmarkDetector::Project(proj_points, mesh_0, fx, fy, cx, cy);
cv::line(img, cv::Point(cvRound(proj_points.at<double>(0,0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)gaze_draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits);
cv::Mat_<double> mesh_1 = (cv::Mat_<double>(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z);
LandmarkDetector::Project(proj_points, mesh_1, fx, fy, cx, cy);
cv::line(img, cv::Point(cvRound(proj_points.at<double>(0, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(0, 1) * (double)gaze_draw_multiplier)),
cv::Point(cvRound(proj_points.at<double>(1, 0) * (double)gaze_draw_multiplier), cvRound(proj_points.at<double>(1, 1) * (double)gaze_draw_multiplier)), cv::Scalar(110, 220, 0), 2, CV_AA, gaze_draw_shiftbits);
}